summaryrefslogtreecommitdiffstats
path: root/quantum/wpm.c
blob: 925e2c416e702541784622220054a6f68ee67f66 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
/*
 * Copyright 2020 Richard Sutherland (rich@brickbots.com)
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include "wpm.h"

#include <math.h>

// WPM Stuff
static uint8_t  current_wpm = 0;
static uint32_t wpm_timer   = 0;
#ifndef WPM_UNFILTERED
static uint32_t smoothing_timer = 0;
#endif

/* The WPM calculation works by specifying a certain number of 'periods' inside
 * a ring buffer, and we count the number of keypresses which occur in each of
 * those periods.  Then to calculate WPM, we add up all of the keypresses in
 * the whole ring buffer, divide by the number of keypresses in a 'word', and
 * then adjust for how much time is captured by our ring buffer.  Right now
 * the ring buffer is hardcoded below to be six half-second periods, accounting
 * for a total WPM sampling period of up to three seconds of typing.
 *
 * Whenever our WPM drops to absolute zero due to no typing occurring within
 * any contiguous three seconds, we reset and start measuring fresh,
 * which lets our WPM immediately reach the correct value even before a full
 * three second sampling buffer has been filled.
 */
#define MAX_PERIODS (WPM_SAMPLE_PERIODS)
#define PERIOD_DURATION (1000 * WPM_SAMPLE_SECONDS / MAX_PERIODS)
#define LATENCY (100)
static int8_t  period_presses[MAX_PERIODS] = {0};
static uint8_t current_period              = 0;
static uint8_t periods                     = 1;

#if !defined(WPM_UNFILTERED)
static uint8_t prev_wpm = 0;
static uint8_t next_wpm = 0;
#endif

void    set_current_wpm(uint8_t new_wpm) { current_wpm = new_wpm; }
uint8_t get_current_wpm(void) { return current_wpm; }

bool wpm_keycode(uint16_t keycode) { return wpm_keycode_kb(keycode); }

__attribute__((weak)) bool wpm_keycode_kb(uint16_t keycode) { return wpm_keycode_user(keycode); }

__attribute__((weak)) bool wpm_keycode_user(uint16_t keycode) {
    if ((keycode >= QK_MOD_TAP && keycode <= QK_MOD_TAP_MAX) || (keycode >= QK_LAYER_TAP && keycode <= QK_LAYER_TAP_MAX) || (keycode >= QK_MODS && keycode <= QK_MODS_MAX)) {
        keycode = keycode & 0xFF;
    } else if (keycode > 0xFF) {
        keycode = 0;
    }
    if ((keycode >= KC_A && keycode <= KC_0) || (keycode >= KC_TAB && keycode <= KC_SLASH)) {
        return true;
    }

    return false;
}

#ifdef WPM_ALLOW_COUNT_REGRESSION
__attribute__((weak)) uint8_t wpm_regress_count(uint16_t keycode) {
    bool weak_modded = (keycode >= QK_LCTL && keycode < QK_LSFT) || (keycode >= QK_RCTL && keycode < QK_RSFT);

    if ((keycode >= QK_MOD_TAP && keycode <= QK_MOD_TAP_MAX) || (keycode >= QK_LAYER_TAP && keycode <= QK_LAYER_TAP_MAX) || (keycode >= QK_MODS && keycode <= QK_MODS_MAX)) {
        keycode = keycode & 0xFF;
    } else if (keycode > 0xFF) {
        keycode = 0;
    }
    if (keycode == KC_DELETE || keycode == KC_BACKSPACE) {
        if (((get_mods() | get_oneshot_mods()) & MOD_MASK_CTRL) || weak_modded) {
            return WPM_ESTIMATED_WORD_SIZE;
        } else {
            return 1;
        }
    } else {
        return 0;
    }
}
#endif

// Outside 'raw' mode we smooth results over time.

void update_wpm(uint16_t keycode) {
    if (wpm_keycode(keycode)) {
        period_presses[current_period]++;
    }
#ifdef WPM_ALLOW_COUNT_REGRESSION
    uint8_t regress = wpm_regress_count(keycode);
    if (regress) {
        period_presses[current_period]--;
    }
#endif
}

void decay_wpm(void) {
    int32_t presses = period_presses[0];
    for (int i = 1; i <= periods; i++) {
        presses += period_presses[i];
    }
    if (presses < 0) {
        presses = 0;
    }
    int32_t  elapsed  = timer_elapsed32(wpm_timer);
    uint32_t duration = (((periods)*PERIOD_DURATION) + elapsed);
    uint32_t wpm_now  = (60000 * presses) / (duration * WPM_ESTIMATED_WORD_SIZE);
    wpm_now           = (wpm_now > 240) ? 240 : wpm_now;

    if (elapsed > PERIOD_DURATION) {
        current_period                 = (current_period + 1) % MAX_PERIODS;
        period_presses[current_period] = 0;
        periods                        = (periods < MAX_PERIODS - 1) ? periods + 1 : MAX_PERIODS - 1;
        elapsed                        = 0;
        /* if (wpm_timer == 0) { */
        wpm_timer = timer_read32();
        /* } else { */
        /*     wpm_timer += PERIOD_DURATION; */
        /* } */
    }
    if (presses < 2)  // don't guess high WPM based on a single keypress.
        wpm_now = 0;

#if defined WPM_LAUNCH_CONTROL
    if (presses == 0) {
        current_period = 0;
        periods        = 0;
        wpm_now        = 0;
    }
#endif  // WPM_LAUNCH_CONTROL

#ifndef WPM_UNFILTERED
    int32_t latency = timer_elapsed32(smoothing_timer);
    if (latency > LATENCY) {
        smoothing_timer = timer_read32();
        prev_wpm        = current_wpm;
        next_wpm        = wpm_now;
    }

    current_wpm = prev_wpm + (latency * ((int)next_wpm - (int)prev_wpm) / LATENCY);
#else
    current_wpm = wpm_now;
#endif
}