summaryrefslogtreecommitdiffstats
path: root/quantum/audio/audio_pwm.c
blob: 328a253a7e94eae286538f2ebff4d75fcbc87733 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
#include <stdio.h>
#include <string.h>
//#include <math.h>
#include <avr/pgmspace.h>
#include <avr/interrupt.h>
#include <avr/io.h>
#include "print.h"
#include "audio.h"
#include "keymap_common.h"

#include "eeconfig.h"

#define PI 3.14159265

#define CPU_PRESCALER 8


// Timer Abstractions

// TIMSK3 - Timer/Counter #3 Interrupt Mask Register
// Turn on/off 3A interputs, stopping/enabling the ISR calls
#define ENABLE_AUDIO_COUNTER_3_ISR TIMSK3 |= _BV(OCIE3A)
#define DISABLE_AUDIO_COUNTER_3_ISR TIMSK3 &= ~_BV(OCIE3A)


// TCCR3A: Timer/Counter #3 Control Register
// Compare Output Mode (COM3An) = 0b00 = Normal port operation, OC3A disconnected from PC6
#define ENABLE_AUDIO_COUNTER_3_OUTPUT TCCR3A |= _BV(COM3A1);
#define DISABLE_AUDIO_COUNTER_3_OUTPUT TCCR3A &= ~(_BV(COM3A1) | _BV(COM3A0));


#define NOTE_PERIOD ICR3
#define NOTE_DUTY_CYCLE OCR3A


#ifdef PWM_AUDIO
    #include "wave.h"
    #define SAMPLE_DIVIDER 39
    #define SAMPLE_RATE (2000000.0/SAMPLE_DIVIDER/2048)
    // Resistor value of 1/ (2 * PI * 10nF * (2000000 hertz / SAMPLE_DIVIDER / 10)) for 10nF cap

    float places[8] = {0, 0, 0, 0, 0, 0, 0, 0};
    uint16_t place_int = 0;
    bool repeat = true;
#endif

void delay_us(int count) {
  while(count--) {
    _delay_us(1);
  }
}

int voices = 0;
int voice_place = 0;
float frequency = 0;
int volume = 0;
long position = 0;

float frequencies[8] = {0, 0, 0, 0, 0, 0, 0, 0};
int volumes[8] = {0, 0, 0, 0, 0, 0, 0, 0};
bool sliding = false;

float place = 0;

uint8_t * sample;
uint16_t sample_length = 0;
// float freq = 0;

bool     playing_notes = false;
bool     playing_note = false;
float    note_frequency = 0;
float    note_length = 0;
uint8_t  note_tempo = TEMPO_DEFAULT;
float    note_timbre = TIMBRE_DEFAULT;
uint16_t note_position = 0;
float (* notes_pointer)[][2];
uint16_t notes_count;
bool     notes_repeat;
float    notes_rest;
bool     note_resting = false;

uint8_t current_note = 0;
uint8_t rest_counter = 0;

#ifdef VIBRATO_ENABLE
float vibrato_counter = 0;
float vibrato_strength = .5;
float vibrato_rate = 0.125;
#endif

float polyphony_rate = 0;

static bool audio_initialized = false;

audio_config_t audio_config;

uint16_t envelope_index = 0;

void audio_init() {

    // Check EEPROM
    if (!eeconfig_is_enabled())
    {
        eeconfig_init();
    }
    audio_config.raw = eeconfig_read_audio();

    #ifdef PWM_AUDIO

        PLLFRQ = _BV(PDIV2);
        PLLCSR = _BV(PLLE);
        while(!(PLLCSR & _BV(PLOCK)));
        PLLFRQ |= _BV(PLLTM0); /* PCK 48MHz */

        /* Init a fast PWM on Timer4 */
        TCCR4A = _BV(COM4A0) | _BV(PWM4A); /* Clear OC4A on Compare Match */
        TCCR4B = _BV(CS40); /* No prescaling => f = PCK/256 = 187500Hz */
        OCR4A = 0;

        /* Enable the OC4A output */
        DDRC |= _BV(PORTC6);

        DISABLE_AUDIO_COUNTER_3_ISR; // Turn off 3A interputs

        TCCR3A = 0x0; // Options not needed
        TCCR3B = _BV(CS31) | _BV(CS30) | _BV(WGM32); // 64th prescaling and CTC
        OCR3A = SAMPLE_DIVIDER - 1; // Correct count/compare, related to sample playback

    #else

    	// Set port PC6 (OC3A and /OC4A) as output
        DDRC |= _BV(PORTC6);

        DISABLE_AUDIO_COUNTER_3_ISR;

		// TCCR3A / TCCR3B: Timer/Counter #3 Control Registers
		// Compare Output Mode (COM3An) = 0b00 = Normal port operation, OC3A disconnected from PC6
		// Waveform Generation Mode (WGM3n) = 0b1110 = Fast PWM Mode 14 (Period = ICR3, Duty Cycle = OCR3A)
		// Clock Select (CS3n) = 0b010 = Clock / 8
        TCCR3A = (0 << COM3A1) | (0 << COM3A0) | (1 << WGM31) | (0 << WGM30);
        TCCR3B = (1 << WGM33)  | (1 << WGM32)  | (0 << CS32)  | (1 << CS31) | (0 << CS30);

    #endif

    audio_initialized = true;
}

void stop_all_notes() {
    if (!audio_initialized) {
        audio_init();
    }
    voices = 0;
    #ifdef PWM_AUDIO
	    DISABLE_AUDIO_COUNTER_3_ISR;
    #else
        DISABLE_AUDIO_COUNTER_3_ISR;
        DISABLE_AUDIO_COUNTER_3_OUTPUT;
    #endif

    playing_notes = false;
    playing_note = false;
    frequency = 0;
    volume = 0;

    for (uint8_t i = 0; i < 8; i++)
    {
        frequencies[i] = 0;
        volumes[i] = 0;
    }
}

void stop_note(float freq)
{
    if (playing_note) {
        if (!audio_initialized) {
            audio_init();
        }
        #ifdef PWM_AUDIO
            freq = freq / SAMPLE_RATE;
        #endif
        for (int i = 7; i >= 0; i--) {
            if (frequencies[i] == freq) {
                frequencies[i] = 0;
                volumes[i] = 0;
                for (int j = i; (j < 7); j++) {
                    frequencies[j] = frequencies[j+1];
                    frequencies[j+1] = 0;
                    volumes[j] = volumes[j+1];
                    volumes[j+1] = 0;
                }
                break;
            }
        }
        voices--;
        if (voices < 0)
            voices = 0;
        if (voice_place >= voices) {
            voice_place = 0;
        }
        if (voices == 0) {
            #ifdef PWM_AUDIO
                DISABLE_AUDIO_COUNTER_3_ISR;
            #else
                DISABLE_AUDIO_COUNTER_3_ISR;
                DISABLE_AUDIO_COUNTER_3_OUTPUT;
            #endif
            frequency = 0;
            volume = 0;
            playing_note = false;
        }
    }
}

#ifdef VIBRATO_ENABLE

float mod(float a, int b)
{
    float r = fmod(a, b);
    return r < 0 ? r + b : r;
}

float vibrato(float average_freq) {
    #ifdef VIBRATO_STRENGTH_ENABLE
        float vibrated_freq = average_freq * pow(vibrato_lut[(int)vibrato_counter], vibrato_strength);
    #else
        float vibrated_freq = average_freq * vibrato_lut[(int)vibrato_counter];
    #endif
    vibrato_counter = mod((vibrato_counter + vibrato_rate * (1.0 + 440.0/average_freq)), VIBRATO_LUT_LENGTH);
    return vibrated_freq;
}

#endif

ISR(TIMER3_COMPA_vect)
{
    if (playing_note) {
        #ifdef PWM_AUDIO
            if (voices == 1) {
                // SINE
                OCR4A = pgm_read_byte(&sinewave[(uint16_t)place]) >> 2;

                // SQUARE
                // if (((int)place) >= 1024){
                //     OCR4A = 0xFF >> 2;
                // } else {
                //     OCR4A = 0x00;
                // }

                // SAWTOOTH
                // OCR4A = (int)place / 4;

                // TRIANGLE
                // if (((int)place) >= 1024) {
                //     OCR4A = (int)place / 2;
                // } else {
                //     OCR4A = 2048 - (int)place / 2;
                // }

                place += frequency;

                if (place >= SINE_LENGTH)
                    place -= SINE_LENGTH;

            } else {
                int sum = 0;
                for (int i = 0; i < voices; i++) {
                    // SINE
                    sum += pgm_read_byte(&sinewave[(uint16_t)places[i]]) >> 2;

                    // SQUARE
                    // if (((int)places[i]) >= 1024){
                    //     sum += 0xFF >> 2;
                    // } else {
                    //     sum += 0x00;
                    // }

                    places[i] += frequencies[i];

                    if (places[i] >= SINE_LENGTH)
                        places[i] -= SINE_LENGTH;
                }
                OCR4A = sum;
            }
        #else
            if (voices > 0) {
                float freq;
                if (polyphony_rate > 0) {
                    if (voices > 1) {
                        voice_place %= voices;
                        if (place++ > (frequencies[voice_place] / polyphony_rate / CPU_PRESCALER)) {
                            voice_place = (voice_place + 1) % voices;
                            place = 0.0;
                        }
                    }
                    #ifdef VIBRATO_ENABLE
                    if (vibrato_strength > 0) {
                        freq = vibrato(frequencies[voice_place]);
                    } else {
                    #else
                    {
                    #endif
                        freq = frequencies[voice_place];
                    }
                } else {
                    if (frequency != 0 && frequency < frequencies[voices - 1] && frequency < frequencies[voices - 1] * pow(2, -440/frequencies[voices - 1]/12/2)) {
                        frequency = frequency * pow(2, 440/frequency/12/2);
                    } else if (frequency != 0 && frequency > frequencies[voices - 1] && frequency > frequencies[voices - 1] * pow(2, 440/frequencies[voices - 1]/12/2)) {
                        frequency = frequency * pow(2, -440/frequency/12/2);
                    } else {
                        frequency = frequencies[voices - 1];
                    }


                    #ifdef VIBRATO_ENABLE
                    if (vibrato_strength > 0) {
                        freq = vibrato(frequency);
                    } else {
                    #else
                    {
                    #endif
                        freq = frequency;
                    }
                }

                if (envelope_index < 65535) {
                    envelope_index++;
                }
                freq = voice_envelope(freq);

                if (freq < 30.517578125)
                    freq = 30.52;
                NOTE_PERIOD = (int)(((double)F_CPU) / (freq * CPU_PRESCALER)); // Set max to the period
                NOTE_DUTY_CYCLE = (int)((((double)F_CPU) / (freq * CPU_PRESCALER)) * note_timbre); // Set compare to half the period
            }
        #endif
    }

    // SAMPLE
    // OCR4A = pgm_read_byte(&sample[(uint16_t)place_int]);

    // place_int++;

    // if (place_int >= sample_length)
    //     if (repeat)
    //         place_int -= sample_length;
    //     else
    //         DISABLE_AUDIO_COUNTER_3_ISR;


    if (playing_notes) {
        #ifdef PWM_AUDIO
            OCR4A = pgm_read_byte(&sinewave[(uint16_t)place]) >> 0;

            place += note_frequency;
            if (place >= SINE_LENGTH)
                place -= SINE_LENGTH;
        #else
            if (note_frequency > 0) {
                float freq;

                #ifdef VIBRATO_ENABLE
                if (vibrato_strength > 0) {
                    freq = vibrato(note_frequency);
                } else {
                #else
                {
                #endif
                    freq = note_frequency;
                }

                if (envelope_index < 65535) {
                    envelope_index++;
                }
                freq = voice_envelope(freq);

                NOTE_PERIOD = (int)(((double)F_CPU) / (freq * CPU_PRESCALER)); // Set max to the period
                NOTE_DUTY_CYCLE = (int)((((double)F_CPU) / (freq * CPU_PRESCALER)) * note_timbre); // Set compare to half the period
            } else {
                NOTE_PERIOD = 0;
                NOTE_DUTY_CYCLE = 0;
            }
        #endif


        note_position++;
        bool end_of_note = false;
        if (NOTE_PERIOD > 0)
            end_of_note = (note_position >= (note_length / NOTE_PERIOD * 0xFFFF));
        else
            end_of_note = (note_position >= (note_length * 0x7FF));
        if (end_of_note) {
            current_note++;
            if (current_note >= notes_count) {
                if (notes_repeat) {
                    current_note = 0;
                } else {
                    #ifdef PWM_AUDIO
                        DISABLE_AUDIO_COUNTER_3_ISR;
                    #else
                        DISABLE_AUDIO_COUNTER_3_ISR;
                        DISABLE_AUDIO_COUNTER_3_OUTPUT;
                    #endif
                    playing_notes = false;
                    return;
                }
            }
            if (!note_resting && (notes_rest > 0)) {
                note_resting = true;
                note_frequency = 0;
                note_length = notes_rest;
                current_note--;
            } else {
                note_resting = false;
                #ifdef PWM_AUDIO
                    note_frequency = (*notes_pointer)[current_note][0] / SAMPLE_RATE;
                    note_length = (*notes_pointer)[current_note][1] * (((float)note_tempo) / 100);
                #else
                    envelope_index = 0;
                    note_frequency = (*notes_pointer)[current_note][0];
                    note_length = ((*notes_pointer)[current_note][1] / 4) * (((float)note_tempo) / 100);
                #endif
            }
            note_position = 0;
        }

    }

    if (!audio_config.enable) {
        playing_notes = false;
        playing_note = false;
    }
}

void play_note(float freq, int vol) {

    if (!audio_initialized) {
        audio_init();
    }

	if (audio_config.enable && voices < 8) {
	    DISABLE_AUDIO_COUNTER_3_ISR;

	    // Cancel notes if notes are playing
	    if (playing_notes)
	        stop_all_notes();

	    playing_note = true;

	    envelope_index = 0;

	    #ifdef PWM_AUDIO
	        freq = freq / SAMPLE_RATE;
	    #endif
	    if (freq > 0) {
	        frequencies[voices] = freq;
	        volumes[voices] = vol;
	        voices++;
	    }

	    #ifdef PWM_AUDIO
	        ENABLE_AUDIO_COUNTER_3_ISR;
	    #else
	        ENABLE_AUDIO_COUNTER_3_ISR;
	        ENABLE_AUDIO_COUNTER_3_OUTPUT;
	    #endif
	}

}

void play_notes(float (*np)[][2], uint16_t n_count, bool n_repeat, float n_rest)
{

    if (!audio_initialized) {
        audio_init();
    }

	if (audio_config.enable) {

	    DISABLE_AUDIO_COUNTER_3_ISR;

		// Cancel note if a note is playing
	    if (playing_note)
	        stop_all_notes();

	    playing_notes = true;

	    notes_pointer = np;
	    notes_count = n_count;
	    notes_repeat = n_repeat;
	    notes_rest = n_rest;

	    place = 0;
	    current_note = 0;

	    #ifdef PWM_AUDIO
	        note_frequency = (*notes_pointer)[current_note][0] / SAMPLE_RATE;
	        note_length = (*notes_pointer)[current_note][1] * (((float)note_tempo) / 100);
	    #else
	        note_frequency = (*notes_pointer)[current_note][0];
	        note_length = ((*notes_pointer)[current_note][1] / 4) * (((float)note_tempo) / 100);
	    #endif
	    note_position = 0;


	    #ifdef PWM_AUDIO
	        ENABLE_AUDIO_COUNTER_3_ISR;
	    #else
	        ENABLE_AUDIO_COUNTER_3_ISR;
	        ENABLE_AUDIO_COUNTER_3_OUTPUT;
	    #endif
	}

}

#ifdef PWM_AUDIO
void play_sample(uint8_t * s, uint16_t l, bool r) {
    if (!audio_initialized) {
        audio_init();
    }

    if (audio_config.enable) {
        DISABLE_AUDIO_COUNTER_3_ISR;
        stop_all_notes();
        place_int = 0;
        sample = s;
        sample_length = l;
        repeat = r;

        ENABLE_AUDIO_COUNTER_3_ISR;
    }
}
#endif


void audio_toggle(void) {
    audio_config.enable ^= 1;
    eeconfig_update_audio(audio_config.raw);
}

void audio_on(void) {
    audio_config.enable = 1;
    eeconfig_update_audio(audio_config.raw);
}

void audio_off(void) {
    audio_config.enable = 0;
    eeconfig_update_audio(audio_config.raw);
}

#ifdef VIBRATO_ENABLE

// Vibrato rate functions

void set_vibrato_rate(float rate) {
    vibrato_rate = rate;
}

void increase_vibrato_rate(float change) {
    vibrato_rate *= change;
}

void decrease_vibrato_rate(float change) {
    vibrato_rate /= change;
}

#ifdef VIBRATO_STRENGTH_ENABLE

void set_vibrato_strength(float strength) {
    vibrato_strength = strength;
}

void increase_vibrato_strength(float change) {
    vibrato_strength *= change;
}

void decrease_vibrato_strength(float change) {
    vibrato_strength /= change;
}

#endif  /* VIBRATO_STRENGTH_ENABLE */

#endif /* VIBRATO_ENABLE */

// Polyphony functions

void set_polyphony_rate(float rate) {
    polyphony_rate = rate;
}

void enable_polyphony() {
    polyphony_rate = 5;
}

void disable_polyphony() {
    polyphony_rate = 0;
}

void increase_polyphony_rate(float change) {
    polyphony_rate *= change;
}

void decrease_polyphony_rate(float change) {
    polyphony_rate /= change;
}

// Timbre function

void set_timbre(float timbre) {
    note_timbre = timbre;
}

// Tempo functions

void set_tempo(uint8_t tempo) {
    note_tempo = tempo;
}

void decrease_tempo(uint8_t tempo_change) {
    note_tempo += tempo_change;
}

void increase_tempo(uint8_t tempo_change) {
    if (note_tempo - tempo_change < 10) {
        note_tempo = 10;
    } else {
        note_tempo -= tempo_change;
    }
}


//------------------------------------------------------------------------------
// Override these functions in your keymap file to play different tunes on
// startup and bootloader jump
__attribute__ ((weak))
void play_startup_tone()
{
}

__attribute__ ((weak))
void play_goodbye_tone()
{
}
//------------------------------------------------------------------------------