summaryrefslogtreecommitdiffstats
path: root/quantum/audio/audio.c
blob: b9b21066cb081b220c0e342abf235a32b259c623 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
/* Copyright 2016-2020 Jack Humbert
 * Copyright 2020 JohSchneider

 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */
#include "audio.h"
#include "eeconfig.h"
#include "timer.h"
#include "wait.h"
#include "util.h"

/* audio system:
 *
 * audio.[ch] takes care of all overall state, tracking the actively playing
 *            notes/tones; the notes a SONG consists of;
 *            ...
 *            = everything audio-related that is platform agnostic
 *
 * driver_[avr|chibios]_[dac|pwm] take care of the lower hardware dependent parts,
 *            specific to each platform and the used subsystem/driver to drive
 *            the output pins/channels with the calculated frequencies for each
 *            active tone
 *            as part of this, the driver has to trigger regular state updates by
 *            calling 'audio_update_state' through some sort of timer - be it a
 *            dedicated one or piggybacking on for example the timer used to
 *            generate a pwm signal/clock.
 *
 *
 * A Note on terminology:
 * tone, pitch and frequency are used somewhat interchangeably, in a strict Wikipedia-sense:
 *    "(Musical) tone, a sound characterized by its duration, pitch (=frequency),
 *    intensity (=volume), and timbre"
 * - intensity/volume is currently not handled at all, although the 'dac_additive' driver could do so
 * - timbre is handled globally (TODO: only used with the pwm drivers at the moment)
 *
 * in musical_note.h a 'note' is the combination of a pitch and a duration
 * these are used to create SONG arrays; during playback their frequencies
 * are handled as single successive tones, while the durations are
 * kept track of in 'audio_update_state'
 *
 * 'voice' as it is used here, equates to a sort of instrument with its own
 * characteristics sound and effects
 * the audio system as-is deals only with (possibly multiple) tones of one
 * instrument/voice at a time (think: chords). since the number of tones that
 * can be reproduced depends on the hardware/driver in use: pwm can only
 * reproduce one tone per output/speaker; DACs can reproduce/mix multiple
 * when doing additive synthesis.
 *
 * 'duration' can either be in the beats-per-minute related unit found in
 * musical_notes.h, OR in ms; keyboards create SONGs with the former, while
 * the internal state of the audio system does its calculations with the later - ms
 */

#ifndef AUDIO_TONE_STACKSIZE
#    define AUDIO_TONE_STACKSIZE 8
#endif
uint8_t        active_tones = 0;            // number of tones pushed onto the stack by audio_play_tone - might be more than the hardware is able to reproduce at any single time
musical_tone_t tones[AUDIO_TONE_STACKSIZE]; // stack of currently active tones

bool playing_melody = false; // playing a SONG?
bool playing_note   = false; // or (possibly multiple simultaneous) tones
bool state_changed  = false; // global flag, which is set if anything changes with the active_tones

// melody/SONG related state variables
float (*notes_pointer)[][2];                           // SONG, an array of MUSICAL_NOTEs
uint16_t notes_count;                                  // length of the notes_pointer array
bool     notes_repeat;                                 // PLAY_SONG or PLAY_LOOP?
uint16_t melody_current_note_duration = 0;             // duration of the currently playing note from the active melody, in ms
uint8_t  note_tempo                   = TEMPO_DEFAULT; // beats-per-minute
uint16_t current_note                 = 0;             // index into the array at notes_pointer
bool     note_resting                 = false;         // if a short pause was introduced between two notes with the same frequency while playing a melody
uint16_t last_timestamp               = 0;

#ifdef AUDIO_ENABLE_TONE_MULTIPLEXING
#    ifndef AUDIO_MAX_SIMULTANEOUS_TONES
#        define AUDIO_MAX_SIMULTANEOUS_TONES 3
#    endif
uint16_t tone_multiplexing_rate        = AUDIO_TONE_MULTIPLEXING_RATE_DEFAULT;
uint8_t  tone_multiplexing_index_shift = 0; // offset used on active-tone array access
#endif

// provided and used by voices.c
extern uint8_t  note_timbre;
extern bool     glissando;
extern bool     vibrato;
extern uint16_t voices_timer;

#ifndef STARTUP_SONG
#    define STARTUP_SONG SONG(STARTUP_SOUND)
#endif
#ifndef AUDIO_ON_SONG
#    define AUDIO_ON_SONG SONG(AUDIO_ON_SOUND)
#endif
#ifndef AUDIO_OFF_SONG
#    define AUDIO_OFF_SONG SONG(AUDIO_OFF_SOUND)
#endif
float startup_song[][2]   = STARTUP_SONG;
float audio_on_song[][2]  = AUDIO_ON_SONG;
float audio_off_song[][2] = AUDIO_OFF_SONG;

static bool    audio_initialized    = false;
static bool    audio_driver_stopped = true;
audio_config_t audio_config;

void eeconfig_update_audio_current(void) {
    eeconfig_update_audio(audio_config.raw);
}

void audio_init(void) {
    if (audio_initialized) {
        return;
    }

    // Check EEPROM
#ifdef EEPROM_ENABLE
    if (!eeconfig_is_enabled()) {
        eeconfig_init();
    }
    audio_config.raw = eeconfig_read_audio();
#else // EEPROM settings
    audio_config.enable        = true;
#    ifdef AUDIO_CLICKY_ON
    audio_config.clicky_enable = true;
#    endif
#endif // EEPROM settings

    for (uint8_t i = 0; i < AUDIO_TONE_STACKSIZE; i++) {
        tones[i] = (musical_tone_t){.time_started = 0, .pitch = -1.0f, .duration = 0};
    }

    if (!audio_initialized) {
        audio_driver_initialize();
        audio_initialized = true;
    }
    stop_all_notes();
#ifndef AUDIO_INIT_DELAY
    audio_startup();
#endif
}

void audio_startup(void) {
    if (audio_config.enable) {
        PLAY_SONG(startup_song);
    }

    last_timestamp = timer_read();
}

void audio_toggle(void) {
    if (audio_config.enable) {
        stop_all_notes();
    }
    audio_config.enable ^= 1;
    eeconfig_update_audio(audio_config.raw);
    if (audio_config.enable) {
        audio_on_user();
    } else {
        audio_off_user();
    }
}

void audio_on(void) {
    audio_config.enable = 1;
    eeconfig_update_audio(audio_config.raw);
    audio_on_user();
    PLAY_SONG(audio_on_song);
}

void audio_off(void) {
    PLAY_SONG(audio_off_song);
    audio_off_user();
    wait_ms(100);
    audio_stop_all();
    audio_config.enable = 0;
    eeconfig_update_audio(audio_config.raw);
}

bool audio_is_on(void) {
    return (audio_config.enable != 0);
}

void audio_stop_all(void) {
    if (audio_driver_stopped) {
        return;
    }

    active_tones = 0;

    audio_driver_stop();

    playing_melody = false;
    playing_note   = false;

    melody_current_note_duration = 0;

    for (uint8_t i = 0; i < AUDIO_TONE_STACKSIZE; i++) {
        tones[i] = (musical_tone_t){.time_started = 0, .pitch = -1.0f, .duration = 0};
    }

    audio_driver_stopped = true;
}

void audio_stop_tone(float pitch) {
    if (pitch < 0.0f) {
        pitch = -1 * pitch;
    }

    if (playing_note) {
        if (!audio_initialized) {
            audio_init();
        }
        bool found = false;
        for (int i = AUDIO_TONE_STACKSIZE - 1; i >= 0; i--) {
            found = (tones[i].pitch == pitch);
            if (found) {
                tones[i] = (musical_tone_t){.time_started = 0, .pitch = -1.0f, .duration = 0};
                for (int j = i; (j < AUDIO_TONE_STACKSIZE - 1); j++) {
                    tones[j]     = tones[j + 1];
                    tones[j + 1] = (musical_tone_t){.time_started = 0, .pitch = -1.0f, .duration = 0};
                }
                break;
            }
        }
        if (!found) {
            return;
        }

        state_changed = true;
        active_tones--;
        if (active_tones < 0) active_tones = 0;
#ifdef AUDIO_ENABLE_TONE_MULTIPLEXING
        if (tone_multiplexing_index_shift >= active_tones) {
            tone_multiplexing_index_shift = 0;
        }
#endif
        if (active_tones == 0) {
            audio_driver_stop();
            audio_driver_stopped = true;
            playing_note         = false;
        }
    }
}

void audio_play_note(float pitch, uint16_t duration) {
    if (!audio_config.enable) {
        return;
    }

    if (!audio_initialized) {
        audio_init();
    }

    if (pitch < 0.0f) {
        pitch = -1 * pitch;
    }

    // round-robin: shifting out old tones, keeping only unique ones
    // if the new frequency is already amongst the active tones, shift it to the top of the stack
    bool found = false;
    for (int i = active_tones - 1; i >= 0; i--) {
        found = (tones[i].pitch == pitch);
        if (found) {
            for (int j = i; (j < active_tones - 1); j++) {
                tones[j]     = tones[j + 1];
                tones[j + 1] = (musical_tone_t){.time_started = timer_read(), .pitch = pitch, .duration = duration};
            }
            return; // since this frequency played already, the hardware was already started
        }
    }

    // frequency/tone is actually new, so we put it on the top of the stack
    active_tones++;
    if (active_tones > AUDIO_TONE_STACKSIZE) {
        active_tones = AUDIO_TONE_STACKSIZE;
        // shift out the oldest tone to make room
        for (int i = 0; i < active_tones - 1; i++) {
            tones[i] = tones[i + 1];
        }
    }
    state_changed           = true;
    playing_note            = true;
    tones[active_tones - 1] = (musical_tone_t){.time_started = timer_read(), .pitch = pitch, .duration = duration};

    // TODO: needs to be handled per note/tone -> use its timestamp instead?
    voices_timer = timer_read(); // reset to zero, for the effects added by voices.c

    if (audio_driver_stopped) {
        audio_driver_start();
        audio_driver_stopped = false;
    }
}

void audio_play_tone(float pitch) {
    audio_play_note(pitch, 0xffff);
}

void audio_play_melody(float (*np)[][2], uint16_t n_count, bool n_repeat) {
    if (!audio_config.enable) {
        audio_stop_all();
        return;
    }

    if (!audio_initialized) {
        audio_init();
    }

    // Cancel note if a note is playing
    if (playing_note) audio_stop_all();

    playing_melody = true;
    note_resting   = false;

    notes_pointer = np;
    notes_count   = n_count;
    notes_repeat  = n_repeat;

    current_note = 0; // note in the melody-array/list at note_pointer

    // start first note manually, which also starts the audio_driver
    // all following/remaining notes are played by 'audio_update_state'
    audio_play_note((*notes_pointer)[current_note][0], audio_duration_to_ms((*notes_pointer)[current_note][1]));
    last_timestamp               = timer_read();
    melody_current_note_duration = audio_duration_to_ms((*notes_pointer)[current_note][1]);
}

float click[2][2];
void  audio_play_click(uint16_t delay, float pitch, uint16_t duration) {
    uint16_t duration_tone  = audio_ms_to_duration(duration);
    uint16_t duration_delay = audio_ms_to_duration(delay);

    if (delay <= 0.0f) {
        click[0][0] = pitch;
        click[0][1] = duration_tone;
        click[1][0] = 0.0f;
        click[1][1] = 0.0f;
        audio_play_melody(&click, 1, false);
    } else {
        // first note is a rest/pause
        click[0][0] = 0.0f;
        click[0][1] = duration_delay;
        // second note is the actual click
        click[1][0] = pitch;
        click[1][1] = duration_tone;
        audio_play_melody(&click, 2, false);
    }
}

bool audio_is_playing_note(void) {
    return playing_note;
}

bool audio_is_playing_melody(void) {
    return playing_melody;
}

uint8_t audio_get_number_of_active_tones(void) {
    return active_tones;
}

float audio_get_frequency(uint8_t tone_index) {
    if (tone_index >= active_tones) {
        return 0.0f;
    }
    return tones[active_tones - tone_index - 1].pitch;
}

float audio_get_processed_frequency(uint8_t tone_index) {
    if (tone_index >= active_tones) {
        return 0.0f;
    }

    int8_t index = active_tones - tone_index - 1;
    // new tones are stacked on top (= appended at the end), so the most recent/current is MAX-1

#ifdef AUDIO_ENABLE_TONE_MULTIPLEXING
    index = index - tone_multiplexing_index_shift;
    if (index < 0) // wrap around
        index += active_tones;
#endif

    if (tones[index].pitch <= 0.0f) {
        return 0.0f;
    }

    return voice_envelope(tones[index].pitch);
}

bool audio_update_state(void) {
    if (!playing_note && !playing_melody) {
        return false;
    }

    bool     goto_next_note = false;
    uint16_t current_time   = timer_read();

    if (playing_melody) {
        goto_next_note = timer_elapsed(last_timestamp) >= melody_current_note_duration;
        if (goto_next_note) {
            uint16_t delta         = timer_elapsed(last_timestamp) - melody_current_note_duration;
            last_timestamp         = current_time;
            uint16_t previous_note = current_note;
            current_note++;
            voices_timer = timer_read(); // reset to zero, for the effects added by voices.c

            if (current_note >= notes_count) {
                if (notes_repeat) {
                    current_note = 0;
                } else {
                    audio_stop_all();
                    return false;
                }
            }

            if (!note_resting && (*notes_pointer)[previous_note][0] == (*notes_pointer)[current_note][0]) {
                note_resting = true;

                // special handling for successive notes of the same frequency:
                // insert a short pause to separate them audibly
                audio_play_note(0.0f, audio_duration_to_ms(2));
                current_note                 = previous_note;
                melody_current_note_duration = audio_duration_to_ms(2);

            } else {
                note_resting = false;

                // TODO: handle glissando here (or remember previous and current tone)
                /* there would need to be a freq(here we are) -> freq(next note)
                 * and do slide/glissando in between problem here is to know which
                 * frequency on the stack relates to what other? e.g. a melody starts
                 * tones in a sequence, and stops expiring one, so the most recently
                 * stopped is the starting point for a glissando to the most recently started?
                 * how to detect and preserve this relation?
                 * and what about user input, chords, ...?
                 */

                // '- delta': Skip forward in the next note's length if we've over shot
                //            the last, so the overall length of the song is the same
                uint16_t duration = audio_duration_to_ms((*notes_pointer)[current_note][1]);

                // Skip forward past any completely missed notes
                while (delta > duration && current_note < notes_count - 1) {
                    delta -= duration;
                    current_note++;
                    duration = audio_duration_to_ms((*notes_pointer)[current_note][1]);
                }

                if (delta < duration) {
                    duration -= delta;
                } else {
                    // Only way to get here is if it is the last note and
                    // we have completely missed it. Play it for 1ms...
                    duration = 1;
                }

                audio_play_note((*notes_pointer)[current_note][0], duration);
                melody_current_note_duration = duration;
            }
        }
    }

    if (playing_note) {
#ifdef AUDIO_ENABLE_TONE_MULTIPLEXING
        tone_multiplexing_index_shift = (int)(current_time / tone_multiplexing_rate) % MIN(AUDIO_MAX_SIMULTANEOUS_TONES, active_tones);
        goto_next_note                = true;
#endif
        if (vibrato || glissando) {
            // force update on each cycle, since vibrato shifts the frequency slightly
            goto_next_note = true;
        }

        // housekeeping: stop notes that have no playtime left
        for (int i = 0; i < active_tones; i++) {
            if ((tones[i].duration != 0xffff) // indefinitely playing notes, started by 'audio_play_tone'
                && (tones[i].duration != 0)   // 'uninitialized'
            ) {
                if (timer_elapsed(tones[i].time_started) >= tones[i].duration) {
                    audio_stop_tone(tones[i].pitch); // also sets 'state_changed=true'
                }
            }
        }
    }

    // state-changes have a higher priority, always triggering the hardware to update
    if (state_changed) {
        state_changed = false;
        return true;
    }

    return goto_next_note;
}

// Tone-multiplexing functions
#ifdef AUDIO_ENABLE_TONE_MULTIPLEXING
void audio_set_tone_multiplexing_rate(uint16_t rate) {
    tone_multiplexing_rate = rate;
}
void audio_enable_tone_multiplexing(void) {
    tone_multiplexing_rate = AUDIO_TONE_MULTIPLEXING_RATE_DEFAULT;
}
void audio_disable_tone_multiplexing(void) {
    tone_multiplexing_rate = 0;
}
void audio_increase_tone_multiplexing_rate(uint16_t change) {
    if ((0xffff - change) > tone_multiplexing_rate) {
        tone_multiplexing_rate += change;
    }
}
void audio_decrease_tone_multiplexing_rate(uint16_t change) {
    if (change <= tone_multiplexing_rate) {
        tone_multiplexing_rate -= change;
    }
}
#endif

// Tempo functions

void audio_set_tempo(uint8_t tempo) {
    if (tempo < 10) note_tempo = 10;
    //  else if (tempo > 250)
    //      note_tempo = 250;
    else
        note_tempo = tempo;
}

void audio_increase_tempo(uint8_t tempo_change) {
    if (tempo_change > 255 - note_tempo)
        note_tempo = 255;
    else
        note_tempo += tempo_change;
}

void audio_decrease_tempo(uint8_t tempo_change) {
    if (tempo_change >= note_tempo - 10)
        note_tempo = 10;
    else
        note_tempo -= tempo_change;
}

/**
 * Converts from units of 1/64ths of a beat to milliseconds.
 *
 * Round-off error is at most 1 millisecond.
 *
 * Conversion will never overflow for duration_bpm <= 699, provided that
 * note_tempo is at least 10. This is quite a long duration, over ten beats.
 *
 * Beware that for duration_bpm > 699, the result may overflow uint16_t range
 * when duration_bpm is large compared to note_tempo:
 *
 *    duration_bpm * 60 * 1000 / (64 * note_tempo) > UINT16_MAX
 *
 *    duration_bpm > (2 * 65535 / 1875) * note_tempo
 *                 = 69.904 * note_tempo.
 */
uint16_t audio_duration_to_ms(uint16_t duration_bpm) {
    return ((uint32_t)duration_bpm * 1875) / ((uint_fast16_t)note_tempo * 2);
}

/**
 * Converts from units of milliseconds to 1/64ths of a beat.
 *
 * Round-off error is at most 1/64th of a beat.
 *
 * This conversion never overflows: since duration_ms <= UINT16_MAX = 65535
 * and note_tempo <= 255, the result is always in uint16_t range:
 *
 *     duration_ms * 64 * note_tempo / 60 / 1000
 *     <= 65535 * 2 * 255 / 1875
 *      = 17825.52
 *     <= UINT16_MAX.
 */
uint16_t audio_ms_to_duration(uint16_t duration_ms) {
    return ((uint32_t)duration_ms * 2 * note_tempo) / 1875;
}

__attribute__((weak)) void audio_on_user(void) {}
__attribute__((weak)) void audio_off_user(void) {}