summaryrefslogtreecommitdiffstats
path: root/lib/lufa/Bootloaders/DFU/BootloaderDFU.c
blob: a2307219ecb678b392c507554b91085c4e6d7014 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
/*
             LUFA Library
     Copyright (C) Dean Camera, 2017.

  dean [at] fourwalledcubicle [dot] com
           www.lufa-lib.org
*/

/*
  Copyright 2017  Dean Camera (dean [at] fourwalledcubicle [dot] com)

  Permission to use, copy, modify, distribute, and sell this
  software and its documentation for any purpose is hereby granted
  without fee, provided that the above copyright notice appear in
  all copies and that both that the copyright notice and this
  permission notice and warranty disclaimer appear in supporting
  documentation, and that the name of the author not be used in
  advertising or publicity pertaining to distribution of the
  software without specific, written prior permission.

  The author disclaims all warranties with regard to this
  software, including all implied warranties of merchantability
  and fitness.  In no event shall the author be liable for any
  special, indirect or consequential damages or any damages
  whatsoever resulting from loss of use, data or profits, whether
  in an action of contract, negligence or other tortious action,
  arising out of or in connection with the use or performance of
  this software.
*/

/** \file
 *
 *  Main source file for the DFU class bootloader. This file contains the complete bootloader logic.
 */

#define  INCLUDE_FROM_BOOTLOADER_C
#include "BootloaderDFU.h"

/** Flag to indicate if the bootloader is currently running in secure mode, disallowing memory operations
 *  other than erase. This is initially set to the value set by SECURE_MODE, and cleared by the bootloader
 *  once a memory erase has completed in a bootloader session.
 */
static bool IsSecure = SECURE_MODE;

/** Flag to indicate if the bootloader should be running, or should exit and allow the application code to run
 *  via a soft reset. When cleared, the bootloader will abort, the USB interface will shut down and the application
 *  jumped to via an indirect jump to location 0x0000 (or other location specified by the host).
 */
static bool RunBootloader = true;

/** Flag to indicate if the bootloader is waiting to exit. When the host requests the bootloader to exit and
 *  jump to the application address it specifies, it sends two sequential commands which must be properly
 *  acknowledged. Upon reception of the first the RunBootloader flag is cleared and the WaitForExit flag is set,
 *  causing the bootloader to wait for the final exit command before shutting down.
 */
static bool WaitForExit = false;

/** Current DFU state machine state, one of the values in the DFU_State_t enum. */
static uint8_t DFU_State = dfuIDLE;

/** Status code of the last executed DFU command. This is set to one of the values in the DFU_Status_t enum after
 *  each operation, and returned to the host when a Get Status DFU request is issued.
 */
static uint8_t DFU_Status = OK;

/** Data containing the DFU command sent from the host. */
static DFU_Command_t SentCommand;

/** Response to the last issued Read Data DFU command. Unlike other DFU commands, the read command
 *  requires a single byte response from the bootloader containing the read data when the next DFU_UPLOAD command
 *  is issued by the host.
 */
static uint8_t ResponseByte;

/** Pointer to the start of the user application. By default this is 0x0000 (the reset vector), however the host
 *  may specify an alternate address when issuing the application soft-start command.
 */
static AppPtr_t AppStartPtr = (AppPtr_t)0x0000;

/** 64-bit flash page number. This is concatenated with the current 16-bit address on USB AVRs containing more than
 *  64KB of flash memory.
 */
static uint8_t Flash64KBPage = 0;

/** Memory start address, indicating the current address in the memory being addressed (either FLASH or EEPROM
 *  depending on the issued command from the host).
 */
static uint16_t StartAddr = 0x0000;

/** Memory end address, indicating the end address to read from/write to in the memory being addressed (either FLASH
 *  of EEPROM depending on the issued command from the host).
 */
static uint16_t EndAddr = 0x0000;

/** Magic lock for forced application start. If the HWBE fuse is programmed and BOOTRST is unprogrammed, the bootloader
 *  will start if the /HWB line of the AVR is held low and the system is reset. However, if the /HWB line is still held
 *  low when the application attempts to start via a watchdog reset, the bootloader will re-start. If set to the value
 *  \ref MAGIC_BOOT_KEY the special init function \ref Application_Jump_Check() will force the application to start.
 */
uint16_t MagicBootKey ATTR_NO_INIT;


/** Special startup routine to check if the bootloader was started via a watchdog reset, and if the magic application
 *  start key has been loaded into \ref MagicBootKey. If the bootloader started via the watchdog and the key is valid,
 *  this will force the user application to start via a software jump.
 */
void Application_Jump_Check(void)
{
	bool JumpToApplication = false;

	#if (BOARD == BOARD_LEONARDO)
		/* Enable pull-up on the IO13 pin so we can use it to select the mode */
		PORTC |= (1 << 7);
		Delay_MS(10);

		/* If IO13 is not jumpered to ground, start the user application instead */
		JumpToApplication = ((PINC & (1 << 7)) != 0);

		/* Disable pull-up after the check has completed */
		PORTC &= ~(1 << 7);
	#elif ((BOARD == BOARD_XPLAIN) || (BOARD == BOARD_XPLAIN_REV1))
		/* Disable JTAG debugging */
		JTAG_DISABLE();

		/* Enable pull-up on the JTAG TCK pin so we can use it to select the mode */
		PORTF |= (1 << 4);
		Delay_MS(10);

		/* If the TCK pin is not jumpered to ground, start the user application instead */
		JumpToApplication = ((PINF & (1 << 4)) != 0);

		/* Re-enable JTAG debugging */
		JTAG_ENABLE();
	#else
		/* Check if the device's BOOTRST fuse is set */
		if (boot_lock_fuse_bits_get(GET_HIGH_FUSE_BITS) & FUSE_BOOTRST)
		{
			/* If the reset source was not an external reset or the key is correct, clear it and jump to the application */
			//if (!(MCUSR & (1 << EXTRF)) || (MagicBootKey == MAGIC_BOOT_KEY))
			//  JumpToApplication = true;

			/* Clear reset source */
			MCUSR &= ~(1 << EXTRF);
		}
		else
		{
			/* If the reset source was the bootloader and the key is correct, clear it and jump to the application;
			 * this can happen in the HWBE fuse is set, and the HBE pin is low during the watchdog reset */
			//if ((MCUSR & (1 << WDRF)) && (MagicBootKey == MAGIC_BOOT_KEY))
			//	JumpToApplication = true;

			/* Clear reset source */
			MCUSR &= ~(1 << WDRF);
		}
	#endif

	/* Don't run the user application if the reset vector is blank (no app loaded) */
	bool ApplicationValid = (pgm_read_word_near(0) != 0xFFFF);

	/* If a request has been made to jump to the user application, honor it */
	if (JumpToApplication && ApplicationValid)
	{
		/* Turn off the watchdog */
		MCUSR &= ~(1 << WDRF);
		wdt_disable();

		/* Clear the boot key and jump to the user application */
		MagicBootKey = 0;

		// cppcheck-suppress constStatement
		((void (*)(void))0x0000)();
	}
}

/** Main program entry point. This routine configures the hardware required by the bootloader, then continuously
 *  runs the bootloader processing routine until instructed to soft-exit, or hard-reset via the watchdog to start
 *  the loaded application code.
 */
int main(void)
{
	/* Configure hardware required by the bootloader */
	SetupHardware();

	/* Turn on first LED on the board to indicate that the bootloader has started */
	LEDs_SetAllLEDs(LEDS_LED1 | LEDS_LED2);

	/* Enable global interrupts so that the USB stack can function */
	GlobalInterruptEnable();


	#if (BOARD == BOARD_QMK)
		uint16_t keypress = 0;
	#endif

	/* Run the USB management task while the bootloader is supposed to be running */
	while (RunBootloader || WaitForExit) {
	  USB_USBTask();
	  #if (BOARD == BOARD_QMK)
	  	bool pressed = (PIN(QMK_ESC_INPUT) & NUM(QMK_ESC_INPUT));
		if ((DFU_State == dfuIDLE) && (keypress > 5000) && pressed) {
			break;
		}
		if (pressed) {
		  	keypress++;
		} else {
		  	keypress = 0;
		}

	  #endif
	}

	/* Reset configured hardware back to their original states for the user application */
	ResetHardware();

	/* Start the user application */
	AppStartPtr();
}

/** Configures all hardware required for the bootloader. */
static void SetupHardware(void)
{
	/* Disable watchdog if enabled by bootloader/fuses */
	MCUSR &= ~(1 << WDRF);
	wdt_disable();

	/* Disable clock division */
	clock_prescale_set(clock_div_1);

	/* Relocate the interrupt vector table to the bootloader section */
	MCUCR = (1 << IVCE);
	MCUCR = (1 << IVSEL);

	#if (BOARD == BOARD_QMK)
		// output setup
		DDR(QMK_ESC_OUTPUT) |= NUM(QMK_ESC_OUTPUT);
		PORT(QMK_ESC_OUTPUT) |= NUM(QMK_ESC_OUTPUT);

		// input setup
		DDR(QMK_ESC_INPUT) |= NUM(QMK_ESC_INPUT);
	#endif

	/* Initialize the USB and other board hardware drivers */
	USB_Init();
	LEDs_Init();

	/* Bootloader active LED toggle timer initialization */
	TIMSK1 = (1 << TOIE1);
	TCCR1B = ((1 << CS11) | (1 << CS10));

}	

/** Resets all configured hardware required for the bootloader back to their original states. */
static void ResetHardware(void)
{
	/* Shut down the USB and other board hardware drivers */
	USB_Disable();
	LEDs_Disable();

	/* Disable Bootloader active LED toggle timer */
	TIMSK1 = 0;
	TCCR1B = 0;

	/* Relocate the interrupt vector table back to the application section */
	MCUCR = (1 << IVCE);
	MCUCR = 0;

	#if (BOARD == BOARD_QMK)
		DDR(QMK_ESC_OUTPUT) = PORT(QMK_ESC_OUTPUT) = DDR(QMK_ESC_INPUT) = PORT(QMK_ESC_INPUT) = 0;
	#endif
}

/** ISR to periodically toggle the LEDs on the board to indicate that the bootloader is active. */
ISR(TIMER1_OVF_vect, ISR_BLOCK)
{
	LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);
}

/** Event handler for the USB_ControlRequest event. This is used to catch and process control requests sent to
 *  the device from the USB host before passing along unhandled control requests to the library for processing
 *  internally.
 */
void EVENT_USB_Device_ControlRequest(void)
{
	/* Ignore any requests that aren't directed to the DFU interface */
	if ((USB_ControlRequest.bmRequestType & (CONTROL_REQTYPE_TYPE | CONTROL_REQTYPE_RECIPIENT)) !=
	    (REQTYPE_CLASS | REQREC_INTERFACE))
	{
		return;
	}

	/* Activity - toggle indicator LEDs */
	LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);

	/* Get the size of the command and data from the wLength value */
	SentCommand.DataSize = USB_ControlRequest.wLength;

	switch (USB_ControlRequest.bRequest)
	{
		case DFU_REQ_DNLOAD:
			Endpoint_ClearSETUP();

			/* Check if bootloader is waiting to terminate */
			if (WaitForExit)
			{
				/* Bootloader is terminating - process last received command */
				ProcessBootloaderCommand();

				/* Indicate that the last command has now been processed - free to exit bootloader */
				WaitForExit = false;
			}

			/* If the request has a data stage, load it into the command struct */
			if (SentCommand.DataSize)
			{
				while (!(Endpoint_IsOUTReceived()))
				{
					if (USB_DeviceState == DEVICE_STATE_Unattached)
					  return;
				}

				/* First byte of the data stage is the DNLOAD request's command */
				SentCommand.Command = Endpoint_Read_8();

				/* One byte of the data stage is the command, so subtract it from the total data bytes */
				SentCommand.DataSize--;

				/* Load in the rest of the data stage as command parameters */
				for (uint8_t DataByte = 0; (DataByte < sizeof(SentCommand.Data)) &&
				     Endpoint_BytesInEndpoint(); DataByte++)
				{
					SentCommand.Data[DataByte] = Endpoint_Read_8();
					SentCommand.DataSize--;
				}

				/* Process the command */
				ProcessBootloaderCommand();
			}

			/* Check if currently downloading firmware */
			if (DFU_State == dfuDNLOAD_IDLE)
			{
				if (!(SentCommand.DataSize))
				{
					DFU_State = dfuIDLE;
				}
				else
				{
					/* Throw away the filler bytes before the start of the firmware */
					DiscardFillerBytes(DFU_FILLER_BYTES_SIZE);

					/* Throw away the packet alignment filler bytes before the start of the firmware */
					DiscardFillerBytes(StartAddr % FIXED_CONTROL_ENDPOINT_SIZE);

					/* Calculate the number of bytes remaining to be written */
					uint16_t BytesRemaining = ((EndAddr - StartAddr) + 1);

					if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00))        // Write flash
					{
						/* Calculate the number of words to be written from the number of bytes to be written */
						uint16_t WordsRemaining = (BytesRemaining >> 1);

						union
						{
							uint16_t Words[2];
							uint32_t Long;
						} CurrFlashAddress                 = {.Words = {StartAddr, Flash64KBPage}};

						uint32_t CurrFlashPageStartAddress = CurrFlashAddress.Long;
						uint8_t  WordsInFlashPage          = 0;

						while (WordsRemaining--)
						{
							/* Check if endpoint is empty - if so clear it and wait until ready for next packet */
							if (!(Endpoint_BytesInEndpoint()))
							{
								Endpoint_ClearOUT();

								while (!(Endpoint_IsOUTReceived()))
								{
									if (USB_DeviceState == DEVICE_STATE_Unattached)
									  return;
								}
							}

							/* Write the next word into the current flash page */
							boot_page_fill(CurrFlashAddress.Long, Endpoint_Read_16_LE());

							/* Adjust counters */
							WordsInFlashPage      += 1;
							CurrFlashAddress.Long += 2;

							/* See if an entire page has been written to the flash page buffer */
							if ((WordsInFlashPage == (SPM_PAGESIZE >> 1)) || !(WordsRemaining))
							{
								/* Commit the flash page to memory */
								boot_page_write(CurrFlashPageStartAddress);
								boot_spm_busy_wait();

								/* Check if programming incomplete */
								if (WordsRemaining)
								{
									CurrFlashPageStartAddress = CurrFlashAddress.Long;
									WordsInFlashPage          = 0;

									/* Erase next page's temp buffer */
									boot_page_erase(CurrFlashAddress.Long);
									boot_spm_busy_wait();
								}
							}
						}

						/* Once programming complete, start address equals the end address */
						StartAddr = EndAddr;

						/* Re-enable the RWW section of flash */
						boot_rww_enable();
					}
					else                                                   // Write EEPROM
					{
						while (BytesRemaining--)
						{
							/* Check if endpoint is empty - if so clear it and wait until ready for next packet */
							if (!(Endpoint_BytesInEndpoint()))
							{
								Endpoint_ClearOUT();

								while (!(Endpoint_IsOUTReceived()))
								{
									if (USB_DeviceState == DEVICE_STATE_Unattached)
									  return;
								}
							}

							/* Read the byte from the USB interface and write to to the EEPROM */
							eeprom_update_byte((uint8_t*)StartAddr, Endpoint_Read_8());

							/* Adjust counters */
							StartAddr++;
						}
					}

					/* Throw away the currently unused DFU file suffix */
					DiscardFillerBytes(DFU_FILE_SUFFIX_SIZE);
				}
			}

			Endpoint_ClearOUT();

			Endpoint_ClearStatusStage();

			break;
		case DFU_REQ_UPLOAD:
			Endpoint_ClearSETUP();

			while (!(Endpoint_IsINReady()))
			{
				if (USB_DeviceState == DEVICE_STATE_Unattached)
				  return;
			}

			if (DFU_State != dfuUPLOAD_IDLE)
			{
				if ((DFU_State == dfuERROR) && IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01))       // Blank Check
				{
					/* Blank checking is performed in the DFU_DNLOAD request - if we get here we've told the host
					   that the memory isn't blank, and the host is requesting the first non-blank address */
					Endpoint_Write_16_LE(StartAddr);
				}
				else
				{
					/* Idle state upload - send response to last issued command */
					Endpoint_Write_8(ResponseByte);
				}
			}
			else
			{
				/* Determine the number of bytes remaining in the current block */
				uint16_t BytesRemaining = ((EndAddr - StartAddr) + 1);

				if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00))            // Read FLASH
				{
					/* Calculate the number of words to be written from the number of bytes to be written */
					uint16_t WordsRemaining = (BytesRemaining >> 1);

					union
					{
						uint16_t Words[2];
						uint32_t Long;
					} CurrFlashAddress = {.Words = {StartAddr, Flash64KBPage}};

					while (WordsRemaining--)
					{
						/* Check if endpoint is full - if so clear it and wait until ready for next packet */
						if (Endpoint_BytesInEndpoint() == FIXED_CONTROL_ENDPOINT_SIZE)
						{
							Endpoint_ClearIN();

							while (!(Endpoint_IsINReady()))
							{
								if (USB_DeviceState == DEVICE_STATE_Unattached)
								  return;
							}
						}

						/* Read the flash word and send it via USB to the host */
						#if (FLASHEND > 0xFFFF)
							Endpoint_Write_16_LE(pgm_read_word_far(CurrFlashAddress.Long));
						#else
							Endpoint_Write_16_LE(pgm_read_word(CurrFlashAddress.Long));
						#endif

						/* Adjust counters */
						CurrFlashAddress.Long += 2;
					}

					/* Once reading is complete, start address equals the end address */
					StartAddr = EndAddr;
				}
				else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x02))       // Read EEPROM
				{
					while (BytesRemaining--)
					{
						/* Check if endpoint is full - if so clear it and wait until ready for next packet */
						if (Endpoint_BytesInEndpoint() == FIXED_CONTROL_ENDPOINT_SIZE)
						{
							Endpoint_ClearIN();

							while (!(Endpoint_IsINReady()))
							{
								if (USB_DeviceState == DEVICE_STATE_Unattached)
								  return;
							}
						}

						/* Read the EEPROM byte and send it via USB to the host */
						Endpoint_Write_8(eeprom_read_byte((uint8_t*)StartAddr));

						/* Adjust counters */
						StartAddr++;
					}
				}

				/* Return to idle state */
				DFU_State = dfuIDLE;
			}

			Endpoint_ClearIN();

			Endpoint_ClearStatusStage();
			break;
		case DFU_REQ_GETSTATUS:
			Endpoint_ClearSETUP();

			while (!(Endpoint_IsINReady()))
			{
				if (USB_DeviceState == DEVICE_STATE_Unattached)
				  return;
			}

			/* Write 8-bit status value */
			Endpoint_Write_8(DFU_Status);

			/* Write 24-bit poll timeout value */
			Endpoint_Write_8(0);
			Endpoint_Write_16_LE(0);

			/* Write 8-bit state value */
			Endpoint_Write_8(DFU_State);

			/* Write 8-bit state string ID number */
			Endpoint_Write_8(0);

			Endpoint_ClearIN();

			Endpoint_ClearStatusStage();
			break;
		case DFU_REQ_CLRSTATUS:
			Endpoint_ClearSETUP();

			/* Reset the status value variable to the default OK status */
			DFU_Status = OK;

			Endpoint_ClearStatusStage();
			break;
		case DFU_REQ_GETSTATE:
			Endpoint_ClearSETUP();

			while (!(Endpoint_IsINReady()))
			{
				if (USB_DeviceState == DEVICE_STATE_Unattached)
				  return;
			}

			/* Write the current device state to the endpoint */
			Endpoint_Write_8(DFU_State);

			Endpoint_ClearIN();

			Endpoint_ClearStatusStage();
			break;
		case DFU_REQ_ABORT:
			Endpoint_ClearSETUP();

			/* Reset the current state variable to the default idle state */
			DFU_State = dfuIDLE;

			Endpoint_ClearStatusStage();
			break;
	}
}

/** Routine to discard the specified number of bytes from the control endpoint stream. This is used to
 *  discard unused bytes in the stream from the host, including the memory program block suffix.
 *
 *  \param[in] NumberOfBytes  Number of bytes to discard from the host from the control endpoint
 */
static void DiscardFillerBytes(uint8_t NumberOfBytes)
{
	while (NumberOfBytes--)
	{
		if (!(Endpoint_BytesInEndpoint()))
		{
			Endpoint_ClearOUT();

			/* Wait until next data packet received */
			while (!(Endpoint_IsOUTReceived()))
			{
				if (USB_DeviceState == DEVICE_STATE_Unattached)
				  return;
			}
		}
		else
		{
			Endpoint_Discard_8();
		}
	}
}

/** Routine to process an issued command from the host, via a DFU_DNLOAD request wrapper. This routine ensures
 *  that the command is allowed based on the current secure mode flag value, and passes the command off to the
 *  appropriate handler function.
 */
static void ProcessBootloaderCommand(void)
{
	/* Check if device is in secure mode */
	if (IsSecure)
	{
		/* Don't process command unless it is a READ or chip erase command */
		if (!(((SentCommand.Command == COMMAND_WRITE)             &&
		        IS_TWOBYTE_COMMAND(SentCommand.Data, 0x00, 0xFF)) ||
			   (SentCommand.Command == COMMAND_READ)))
		{
			/* Set the state and status variables to indicate the error */
			DFU_State  = dfuERROR;
			DFU_Status = errWRITE;

			/* Stall command */
			Endpoint_StallTransaction();

			/* Don't process the command */
			return;
		}
	}

	/* Dispatch the required command processing routine based on the command type */
	switch (SentCommand.Command)
	{
		case COMMAND_PROG_START:
			ProcessMemProgCommand();
			break;
		case COMMAND_DISP_DATA:
			ProcessMemReadCommand();
			break;
		case COMMAND_WRITE:
			ProcessWriteCommand();
			break;
		case COMMAND_READ:
			ProcessReadCommand();
			break;
		case COMMAND_CHANGE_BASE_ADDR:
			if (IS_TWOBYTE_COMMAND(SentCommand.Data, 0x03, 0x00))              // Set 64KB flash page command
			  Flash64KBPage = SentCommand.Data[2];

			break;
	}
}

/** Routine to concatenate the given pair of 16-bit memory start and end addresses from the host, and store them
 *  in the StartAddr and EndAddr global variables.
 */
static void LoadStartEndAddresses(void)
{
	union
	{
		uint8_t  Bytes[2];
		uint16_t Word;
	} Address[2] = {{.Bytes = {SentCommand.Data[2], SentCommand.Data[1]}},
	                {.Bytes = {SentCommand.Data[4], SentCommand.Data[3]}}};

	/* Load in the start and ending read addresses from the sent data packet */
	StartAddr = Address[0].Word;
	EndAddr   = Address[1].Word;
}

/** Handler for a Memory Program command issued by the host. This routine handles the preparations needed
 *  to write subsequent data from the host into the specified memory.
 */
static void ProcessMemProgCommand(void)
{
	if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00) ||                          // Write FLASH command
	    IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01))                            // Write EEPROM command
	{
		/* Load in the start and ending read addresses */
		LoadStartEndAddresses();

		/* If FLASH is being written to, we need to pre-erase the first page to write to */
		if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00))
		{
			union
			{
				uint16_t Words[2];
				uint32_t Long;
			} CurrFlashAddress = {.Words = {StartAddr, Flash64KBPage}};

			/* Erase the current page's temp buffer */
			boot_page_erase(CurrFlashAddress.Long);
			boot_spm_busy_wait();
		}

		/* Set the state so that the next DNLOAD requests reads in the firmware */
		DFU_State = dfuDNLOAD_IDLE;
	}
}

/** Handler for a Memory Read command issued by the host. This routine handles the preparations needed
 *  to read subsequent data from the specified memory out to the host, as well as implementing the memory
 *  blank check command.
 */
static void ProcessMemReadCommand(void)
{
	if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00) ||                          // Read FLASH command
        IS_ONEBYTE_COMMAND(SentCommand.Data, 0x02))                            // Read EEPROM command
	{
		/* Load in the start and ending read addresses */
		LoadStartEndAddresses();

		/* Set the state so that the next UPLOAD requests read out the firmware */
		DFU_State = dfuUPLOAD_IDLE;
	}
	else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01))                       // Blank check FLASH command
	{
		uint32_t CurrFlashAddress = 0;

		while (CurrFlashAddress < (uint32_t)BOOT_START_ADDR)
		{
			/* Check if the current byte is not blank */
			#if (FLASHEND > 0xFFFF)
			if (pgm_read_byte_far(CurrFlashAddress) != 0xFF)
			#else
			if (pgm_read_byte(CurrFlashAddress) != 0xFF)
			#endif
			{
				/* Save the location of the first non-blank byte for response back to the host */
				Flash64KBPage = (CurrFlashAddress >> 16);
				StartAddr     = CurrFlashAddress;

				/* Set state and status variables to the appropriate error values */
				DFU_State  = dfuERROR;
				DFU_Status = errCHECK_ERASED;

				break;
			}

			CurrFlashAddress++;
		}
	}
}

/** Handler for a Data Write command issued by the host. This routine handles non-programming commands such as
 *  bootloader exit (both via software jumps and hardware watchdog resets) and flash memory erasure.
 */
static void ProcessWriteCommand(void)
{
	if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x03))                            // Start application
	{
		/* Indicate that the bootloader is terminating */
		WaitForExit = true;

		/* Check if data supplied for the Start Program command - no data executes the program */
		if (SentCommand.DataSize)
		{
			if (SentCommand.Data[1] == 0x01)                                   // Start via jump
			{
				union
				{
					uint8_t  Bytes[2];
					AppPtr_t FuncPtr;
				} Address = {.Bytes = {SentCommand.Data[4], SentCommand.Data[3]}};

				/* Load in the jump address into the application start address pointer */
				AppStartPtr = Address.FuncPtr;
			}
		}
		else
		{
			if (SentCommand.Data[1] == 0x00)                                   // Start via watchdog
			{
				/* Unlock the forced application start mode of the bootloader if it is restarted */
				MagicBootKey = MAGIC_BOOT_KEY;

				/* Start the watchdog to reset the AVR once the communications are finalized */
				wdt_enable(WDTO_250MS);
			}
			else                                                               // Start via jump
			{
				/* Set the flag to terminate the bootloader at next opportunity if a valid application has been loaded */
				if (pgm_read_word_near(0) == 0xFFFF)
				  RunBootloader = false;
			}
		}
	}
	else if (IS_TWOBYTE_COMMAND(SentCommand.Data, 0x00, 0xFF))                 // Erase flash
	{
		uint32_t CurrFlashAddress = 0;

		/* Clear the application section of flash */
		while (CurrFlashAddress < (uint32_t)BOOT_START_ADDR)
		{
			boot_page_erase(CurrFlashAddress);
			boot_spm_busy_wait();
			boot_page_write(CurrFlashAddress);
			boot_spm_busy_wait();

			CurrFlashAddress += SPM_PAGESIZE;
		}

		/* Re-enable the RWW section of flash as writing to the flash locks it out */
		boot_rww_enable();

		/* Memory has been erased, reset the security bit so that programming/reading is allowed */
		IsSecure = false;
	}
}

/** Handler for a Data Read command issued by the host. This routine handles bootloader information retrieval
 *  commands such as device signature and bootloader version retrieval.
 */
static void ProcessReadCommand(void)
{
	const uint8_t BootloaderInfo[3] = {BOOTLOADER_VERSION, BOOTLOADER_ID_BYTE1, BOOTLOADER_ID_BYTE2};
	const uint8_t SignatureInfo[4]  = {0x58, AVR_SIGNATURE_1, AVR_SIGNATURE_2, AVR_SIGNATURE_3};

	uint8_t DataIndexToRead    = SentCommand.Data[1];
	bool    ReadAddressInvalid = false;

	if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00))                        // Read bootloader info
	{
		if (DataIndexToRead < 3)
		  ResponseByte = BootloaderInfo[DataIndexToRead];
		else
		  ReadAddressInvalid = true;
	}
	else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01))                    // Read signature byte
	{
		switch (DataIndexToRead)
		{
			case 0x30:
				ResponseByte = SignatureInfo[0];
				break;
			case 0x31:
				ResponseByte = SignatureInfo[1];
				break;
			case 0x60:
				ResponseByte = SignatureInfo[2];
				break;
			case 0x61:
				ResponseByte = SignatureInfo[3];
				break;
			default:
				ReadAddressInvalid = true;
				break;
		}
	}

	if (ReadAddressInvalid)
	{
		/* Set the state and status variables to indicate the error */
		DFU_State  = dfuERROR;
		DFU_Status = errADDRESS;
	}
}