summaryrefslogtreecommitdiffstats
path: root/keyboards/gboards/g/engine.c
blob: 7ce18d334e286536a1fdd3a1d4b00bc3e4e08a4c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
/*  This is a stripped down version of the Georgi engine meant for use with
 *  Ginni. As such serial-Steno features are disabled, chords are 16bits and
 *  crap is removed where possible
 *
 *  Do not use this on anything other then Ginny if you want to be sane
 */
#include "engine.h"

// Chord state
C_SIZE cChord     = 0;  // Current Chord
int    chordIndex = 0;  // Keys in previousachord
C_SIZE pressed    = 0;  // number of held keys
C_SIZE chordState[32];  // Full Chord history
#define QWERBUF 24      // Size of chords to buffer for output

bool   repeatFlag  = false;  // Should we repeat?
C_SIZE pChord      = 0;      // Previous Chord
C_SIZE stickyBits  = 0;      // Or'd with every incoming press
int    pChordIndex = 0;      // Keys in previousachord
C_SIZE pChordState[32];      // Previous chord sate

// Key Dicts
extern const struct keyEntry     keyDict[];
extern const struct comboEntry   cmbDict[];
extern const struct funcEntry    funDict[];
extern const struct stringEntry  strDict[];
extern const struct specialEntry spcDict[];
extern size_t                    specialLen;
extern size_t                    stringLen;
extern size_t                    funcsLen;
extern size_t                    keyLen;
extern size_t                    comboLen;

// Mode state
enum MODE { STENO = 0, QWERTY, COMMAND };
enum MODE pMode;
enum MODE cMode = QWERTY;

// Command State
#define MAX_CMD_BUF 20
uint8_t CMDLEN = 0;
uint8_t CMDBUF[MAX_CMD_BUF];

// Key Repeat state
bool     inChord    = false;
bool     repEngaged = false;
uint16_t repTimer   = 0;
#define REP_INIT_DELAY 750
#define REP_DELAY 25

// Mousekeys state
bool   inMouse = false;
int8_t mousePress;

// All processing done at chordUp goes through here
void processKeysUp(void) {
    // Check for mousekeys, this is release
#ifdef MOUSEKEY_ENABLE
    if (inMouse) {
        inMouse = false;
        mousekey_off(mousePress);
        mousekey_send();
    }
#endif

    // handle command mode
#ifdef COMMAND_MODE
    if (cChord == COMMAND_MODE) {
#    ifndef NO_DEBUG
        uprintf("COMMAND Toggle\n");
#    endif
        if (cMode != COMMAND) {  // Entering Command Mode
            CMDLEN = 0;
            pMode  = cMode;
            cMode  = COMMAND;
        } else {  // Exiting Command Mode
            cMode = pMode;

            // Press all and release all
            for (int i = 0; i < CMDLEN; i++) {
                register_code(CMDBUF[i]);
            }
            clear_keyboard();
        }
    }
#endif

    // Process and reset state
    processChord();
    cChord     = pressed;
    inChord    = false;
    chordIndex = 0;
    clear_keyboard();
    repEngaged = false;
    for (int i = 0; i < 32; i++) chordState[i] = 0xFFFF;
}

// Update Chord State
bool process_record_kb(uint16_t keycode, keyrecord_t *record) {
    // Check if we should run at all
    if (process_engine_pre(cChord, keycode, record) == false) return true;

    // Everything happens in here when steno keys come in.
    // Bail on keyup

    // Update key repeat timers
    repTimer = timer_read();
    bool pr  = record->event.pressed;
    // Switch on the press adding to chord
    switch (keycode) {
        ENGINE_CONFIG
        default:
            return true;
    }

    // Handle any postprocessing

    // All keys up, send it!
    if (inChord && !pr && (pressed & IN_CHORD_MASK) == 0) {
        processKeysUp();
        return false;
    }
    if (pressed == 0 && !pr) {
        processKeysUp();
        return false;
    }

    cChord |= pressed;
    cChord  = process_engine_post(cChord, keycode, record);
    inChord = (cChord & IN_CHORD_MASK) != 0;

    // Store previous state for fastQWER
    if (pr) {
        chordState[chordIndex] = cChord;
        chordIndex++;
    }

#ifndef NO_DEBUG
    uprintf("Chord: %u\n", cChord);
#endif
    return false;
}
void matrix_scan_user(void) {
    // We abuse this for early sending of key
    // Key repeat only on QWER/SYMB layers
    if (cMode != QWERTY || !inChord) return;

        // Check timers
#ifndef NO_HOLD
    if (!repEngaged && timer_elapsed(repTimer) > REP_INIT_DELAY) {
        // Process Key for report
        processChord();

        // Send report to host
        send_keyboard_report();
        repEngaged = true;
    }
#endif
};

// Try and match cChord
C_SIZE mapKeys(C_SIZE chord, bool lookup) {
    lookup = lookup || repEngaged;
#ifndef NO_DEBUG
    if (!lookup) uprint("SENT!\n");
#endif
    // Single key chords
    for (int i = 0; i < keyLen; i++) {
        if (keyDict[i].chord == chord) {
            if (!lookup) SEND(keyDict[i].key);
            return chord;
        }
    }

    // strings
    for (int i = 0; i < stringLen; i++) {
        struct stringEntry fromPgm;
        memcpy_P(&fromPgm, &strDict[i], sizeof(stringEntry_t));
        if (fromPgm.chord == chord) {
            if (!lookup) {
                if (get_mods() & (MOD_LSFT | MOD_RSFT)) {
                    set_mods(get_mods() & ~(MOD_LSFT | MOD_RSFT));
                    set_oneshot_mods(MOD_LSFT);
                }
                send_string_P((PGM_P)(fromPgm.str));
            }
            return chord;
        }
    }

    // combos
    for (int i = 0; i < comboLen; i++) {
        struct comboEntry fromPgm;
        memcpy_P(&fromPgm, &cmbDict[i], sizeof(comboEntry_t));
        if (fromPgm.chord == chord) {
#ifndef NO_DEBUG
            uprintf("%d found combo\n", i);
#endif

            if (!lookup) {
                uint8_t comboKeys[COMBO_MAX];
                memcpy_P(&comboKeys, fromPgm.keys, sizeof(uint8_t) * COMBO_MAX);
                for (int j = 0; j < COMBO_MAX; j++)
#ifndef NO_DEBUG
                    uprintf("Combo [%u]: %u\n", j, comboKeys[j]);
#endif

                for (int j = 0; (j < COMBO_MAX) && (comboKeys[j] != COMBO_END); j++) {
#ifndef NO_DEBUG
                    uprintf("Combo [%u]: %u\n", j, comboKeys[j]);
#endif
                    SEND(comboKeys[j]);
                }
            }
            return chord;
        }
    }

    // functions
    for (int i = 0; i < funcsLen; i++) {
        if (funDict[i].chord == chord) {
            if (!lookup) funDict[i].act();
            return chord;
        }
    }

    // Special handling
    for (int i = 0; i < specialLen; i++) {
        if (spcDict[i].chord == chord) {
            if (!lookup) {
                uint16_t arg = spcDict[i].arg;
                switch (spcDict[i].action) {
                    case SPEC_STICKY:
                        SET_STICKY(arg);
                        break;
                    case SPEC_REPEAT:
                        REPEAT();
                        break;
                    case SPEC_CLICK:
                        CLICK_MOUSE((uint8_t)arg);
                        break;
                    case SPEC_SWITCH:
                        SWITCH_LAYER(arg);
                        break;
                    default:
                        SEND_STRING("Invalid Special in Keymap");
                }
            }
            return chord;
        }
    }

    if ((chord & IN_CHORD_MASK) && (chord & IN_CHORD_MASK) != chord && mapKeys((chord & IN_CHORD_MASK), true) == (chord & IN_CHORD_MASK)) {
#ifndef NO_DEBUG
        uprintf("Try with ignore mask:%u\n", (chord & IN_CHORD_MASK));
#endif
        mapKeys((chord & ~IN_CHORD_MASK), lookup);
        mapKeys((chord & IN_CHORD_MASK), lookup);
        return chord;
    }
#ifndef NO_DEBUG
    uprintf("Reached end\n");
#endif
    return 0;
}
// Traverse the chord history to a given point
// Returns the mask to use
void processChord(void) {
    // Save the clean chord state
    C_SIZE savedChord = cChord;

    // Apply Stick Bits if needed
    if (stickyBits != 0) {
        cChord |= stickyBits;
        for (int i = 0; i <= chordIndex; i++) chordState[i] |= stickyBits;
    }

    // First we test if a whole chord was passsed
    // If so we just run it handling repeat logic
    if (mapKeys(cChord, true) == cChord) {
        mapKeys(cChord, false);
        // Repeat logic
        if (repeatFlag) {
#ifndef NO_DEBUG
            uprintf("repeating?\n");
#endif
            restoreState();
            repeatFlag = false;
            processChord();
        } else {
            saveState(cChord);
        }
        return;
    }

    C_SIZE next = process_chord_getnext(cChord);
    if (next && next != cChord) {
#ifndef NO_DEBUG
        uprintf("Trying next candidate: %u\n", next);
#endif
        if (mapKeys(next, true) == next) {
            mapKeys(next, false);
            // Repeat logic
            if (repeatFlag) {
#ifndef NO_DEBUG
                uprintf("repeating?\n");
#endif
                restoreState();
                repeatFlag = false;
                processChord();
            } else {
                saveState(cChord);
            }
            return;
        }
    }

#ifndef NO_DEBUG
    uprintf("made it past the maw\n");
#endif

    // Iterate through chord picking out the individual
    // and longest chords
    C_SIZE bufChords[QWERBUF];
    int    bufLen = 0;
    C_SIZE mask   = 0;

    // We iterate over it multiple times to catch the longest
    // chord. Then that gets addded to the mask and re run.
    while (savedChord != mask) {
        C_SIZE test         = 0;
        C_SIZE longestChord = 0;

        for (int i = 0; i <= chordIndex; i++) {
            cChord = chordState[i] & ~mask;
            if (cChord == 0) continue;

            test = mapKeys(cChord, true);
            if (test != 0) {
                longestChord = test;
            }
        }

        mask |= longestChord;
        bufChords[bufLen] = longestChord;
        bufLen++;

        // That's a loop of sorts, halt processing
        if (bufLen >= QWERBUF) {
#ifndef NO_DEBUG
            uprintf("looped. exiting");
#endif
            return;
        }
    }

    // Now that the buffer is populated, we run it
    for (int i = 0; i < bufLen; i++) {
        cChord = bufChords[i];
#ifndef NO_DEBUG
        uprintf("sending: %u\n", cChord);
#endif
        mapKeys(cChord, false);
    }

    // Save state in case of repeat
    if (!repeatFlag) {
        saveState(savedChord);
    }

    // Restore cChord for held repeat
    cChord = savedChord;
    return;
}
void saveState(C_SIZE cleanChord) {
    pChord      = cleanChord;
    pChordIndex = chordIndex;
    for (int i = 0; i < 32; i++) pChordState[i] = chordState[i];
}
void restoreState(void) {
    cChord     = pChord;
    chordIndex = pChordIndex;
    for (int i = 0; i < 32; i++) chordState[i] = pChordState[i];
}

// Macros for calling from keymap.c
void SEND(uint8_t kc) {
    // Send Keycode, Does not work for Quantum Codes
    if (cMode == COMMAND && CMDLEN < MAX_CMD_BUF) {
#ifndef NO_DEBUG
        uprintf("CMD LEN: %d BUF: %d\n", CMDLEN, MAX_CMD_BUF);
#endif
        CMDBUF[CMDLEN] = kc;
        CMDLEN++;
    }

    if (cMode != COMMAND) register_code(kc);
    return;
}
void REPEAT(void) {
    if (cMode != QWERTY) return;

    repeatFlag = true;
    return;
}
void SET_STICKY(C_SIZE stick) {
    stickyBits ^= stick;
    return;
}
void CLICK_MOUSE(uint8_t kc) {
#ifdef MOUSEKEY_ENABLE
    mousekey_on(kc);
    mousekey_send();

    // Store state for later use
    inMouse    = true;
    mousePress = kc;
#endif
}
void SWITCH_LAYER(int layer) {
#ifndef NO_ACTION_LAYER
    if (keymapsCount >= layer) {
        layer_clear();
        layer_on(layer);
    }
#endif
}
uint8_t bitpop_v(C_SIZE val) {
#if C_SIZE == uint8_t
    return bitpop(val);
#elif C_SIZE == uint16_t
    return bitpop16(val);
#elif C_SIZE == uint32_t
    return bitpop32(val);
#elif C_SIZE == uint64_t
    uint8_t n = 0;
    if (bits >> 32) {
        bits >>= 32;
        n += 32;
    }
    if (bits >> 16) {
        bits >>= 16;
        n += 16;
    }
    if (bits >> 8) {
        bits >>= 8;
        n += 8;
    }
    if (bits >> 4) {
        bits >>= 4;
        n += 4;
    }
    if (bits >> 2) {
        bits >>= 2;
        n += 2;
    }
    if (bits >> 1) {
        bits >>= 1;
        n += 1;
    }
    return n;
#else
#    error unsupported C_SIZE
#endif
}

// See engine.h for what these hooks do
__attribute__((weak)) C_SIZE process_engine_post(C_SIZE cur_chord, uint16_t keycode, keyrecord_t *record) { return cur_chord; }
__attribute__((weak)) C_SIZE process_engine_pre(C_SIZE cur_chord, uint16_t keycode, keyrecord_t *record) { return true; }
__attribute__((weak)) C_SIZE process_chord_getnext(C_SIZE cur_chord) { return 0; }