summaryrefslogtreecommitdiffstats
path: root/drivers/led/ckled2001.c
blob: 6ababf55e906818751d1c9c3a8c746321ab93939 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
/* Copyright 2021 @ Keychron (https://www.keychron.com)
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include "ckled2001.h"
#include "i2c_master.h"
#include "wait.h"

#ifndef CKLED2001_TIMEOUT
#    define CKLED2001_TIMEOUT 100
#endif

#ifndef CKLED2001_PERSISTENCE
#    define CKLED2001_PERSISTENCE 0
#endif

#ifndef PHASE_CHANNEL
#    define PHASE_CHANNEL MSKPHASE_12CHANNEL
#endif

#ifndef CKLED2001_CURRENT_TUNE
#    define CKLED2001_CURRENT_TUNE \
        { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }
#endif

// Transfer buffer for TWITransmitData()
uint8_t g_twi_transfer_buffer[65];

// These buffers match the CKLED2001 PWM registers.
// The control buffers match the PG0 LED On/Off registers.
// Storing them like this is optimal for I2C transfers to the registers.
// We could optimize this and take out the unused registers from these
// buffers and the transfers in ckled2001_write_pwm_buffer() but it's
// probably not worth the extra complexity.
uint8_t g_pwm_buffer[DRIVER_COUNT][192];
bool    g_pwm_buffer_update_required[DRIVER_COUNT] = {false};

uint8_t g_led_control_registers[DRIVER_COUNT][24]             = {0};
bool    g_led_control_registers_update_required[DRIVER_COUNT] = {false};

bool ckled2001_write_register(uint8_t addr, uint8_t reg, uint8_t data) {
    // If the transaction fails function returns false.
    g_twi_transfer_buffer[0] = reg;
    g_twi_transfer_buffer[1] = data;

#if CKLED2001_PERSISTENCE > 0
    for (uint8_t i = 0; i < CKLED2001_PERSISTENCE; i++) {
        if (i2c_transmit(addr << 1, g_twi_transfer_buffer, 2, CKLED2001_TIMEOUT) != 0) {
            return false;
        }
    }
#else
    if (i2c_transmit(addr << 1, g_twi_transfer_buffer, 2, CKLED2001_TIMEOUT) != 0) {
        return false;
    }
#endif
    return true;
}

bool ckled2001_write_pwm_buffer(uint8_t addr, uint8_t *pwm_buffer) {
    // Assumes PG1 is already selected.
    // If any of the transactions fails function returns false.
    // Transmit PWM registers in 3 transfers of 64 bytes.

    // Iterate over the pwm_buffer contents at 64 byte intervals.
    for (uint8_t i = 0; i < 192; i += 64) {
        g_twi_transfer_buffer[0] = i;
        // Copy the data from i to i+63.
        // Device will auto-increment register for data after the first byte
        // Thus this sets registers 0x00-0x0F, 0x10-0x1F, etc. in one transfer.
        for (uint8_t j = 0; j < 64; j++) {
            g_twi_transfer_buffer[1 + j] = pwm_buffer[i + j];
        }

#if CKLED2001_PERSISTENCE > 0
        for (uint8_t i = 0; i < CKLED2001_PERSISTENCE; i++) {
            if (i2c_transmit(addr << 1, g_twi_transfer_buffer, 65, CKLED2001_TIMEOUT) != 0) {
                return false;
            }
        }
#else
        if (i2c_transmit(addr << 1, g_twi_transfer_buffer, 65, CKLED2001_TIMEOUT) != 0) {
            return false;
        }
#endif
    }
    return true;
}

void ckled2001_init(uint8_t addr) {
    // Select to function page
    ckled2001_write_register(addr, CONFIGURE_CMD_PAGE, FUNCTION_PAGE);
    // Setting LED driver to shutdown mode
    ckled2001_write_register(addr, CONFIGURATION_REG, MSKSW_SHUT_DOWN_MODE);
    // Setting internal channel pulldown/pullup
    ckled2001_write_register(addr, PDU_REG, MSKSET_CA_CB_CHANNEL);
    // Select number of scan phase
    ckled2001_write_register(addr, SCAN_PHASE_REG, PHASE_CHANNEL);
    // Setting PWM Delay Phase
    ckled2001_write_register(addr, SLEW_RATE_CONTROL_MODE1_REG, MSKPWM_DELAY_PHASE_ENABLE);
    // Setting Driving/Sinking Channel Slew Rate
    ckled2001_write_register(addr, SLEW_RATE_CONTROL_MODE2_REG, MSKDRIVING_SINKING_CHHANNEL_SLEWRATE_ENABLE);
    // Setting Iref
    ckled2001_write_register(addr, SOFTWARE_SLEEP_REG, MSKSLEEP_DISABLE);
    // Set LED CONTROL PAGE (Page 0)
    ckled2001_write_register(addr, CONFIGURE_CMD_PAGE, LED_CONTROL_PAGE);
    for (int i = 0; i < LED_CONTROL_ON_OFF_LENGTH; i++) {
        ckled2001_write_register(addr, i, 0x00);
    }

    // Set PWM PAGE (Page 1)
    ckled2001_write_register(addr, CONFIGURE_CMD_PAGE, LED_PWM_PAGE);
    for (int i = 0; i < LED_CURRENT_TUNE_LENGTH; i++) {
        ckled2001_write_register(addr, i, 0x00);
    }

    // Set CURRENT PAGE (Page 4)
    uint8_t current_tuen_reg_list[LED_CURRENT_TUNE_LENGTH] = CKLED2001_CURRENT_TUNE;
    ckled2001_write_register(addr, CONFIGURE_CMD_PAGE, CURRENT_TUNE_PAGE);
    for (int i = 0; i < LED_CURRENT_TUNE_LENGTH; i++) {
        ckled2001_write_register(addr, i, current_tuen_reg_list[i]);
    }

    // Enable LEDs ON/OFF
    ckled2001_write_register(addr, CONFIGURE_CMD_PAGE, LED_CONTROL_PAGE);
    for (int i = 0; i < LED_CONTROL_ON_OFF_LENGTH; i++) {
        ckled2001_write_register(addr, i, 0xFF);
    }

    // Select to function page
    ckled2001_write_register(addr, CONFIGURE_CMD_PAGE, FUNCTION_PAGE);
    // Setting LED driver to normal mode
    ckled2001_write_register(addr, CONFIGURATION_REG, MSKSW_NORMAL_MODE);
}

void ckled2001_set_color(int index, uint8_t red, uint8_t green, uint8_t blue) {
    ckled2001_led led;
    if (index >= 0 && index < RGB_MATRIX_LED_COUNT) {
        memcpy_P(&led, (&g_ckled2001_leds[index]), sizeof(led));

        if (g_pwm_buffer[led.driver][led.r] == red && g_pwm_buffer[led.driver][led.g] == green && g_pwm_buffer[led.driver][led.b] == blue) {
            return;
        }
        g_pwm_buffer[led.driver][led.r]          = red;
        g_pwm_buffer[led.driver][led.g]          = green;
        g_pwm_buffer[led.driver][led.b]          = blue;
        g_pwm_buffer_update_required[led.driver] = true;
    }
}

void ckled2001_set_color_all(uint8_t red, uint8_t green, uint8_t blue) {
    for (int i = 0; i < RGB_MATRIX_LED_COUNT; i++) {
        ckled2001_set_color(i, red, green, blue);
    }
}

void ckled2001_set_led_control_register(uint8_t index, bool red, bool green, bool blue) {
    ckled2001_led led;
    memcpy_P(&led, (&g_ckled2001_leds[index]), sizeof(led));

    uint8_t control_register_r = led.r / 8;
    uint8_t control_register_g = led.g / 8;
    uint8_t control_register_b = led.b / 8;
    uint8_t bit_r              = led.r % 8;
    uint8_t bit_g              = led.g % 8;
    uint8_t bit_b              = led.b % 8;

    if (red) {
        g_led_control_registers[led.driver][control_register_r] |= (1 << bit_r);
    } else {
        g_led_control_registers[led.driver][control_register_r] &= ~(1 << bit_r);
    }
    if (green) {
        g_led_control_registers[led.driver][control_register_g] |= (1 << bit_g);
    } else {
        g_led_control_registers[led.driver][control_register_g] &= ~(1 << bit_g);
    }
    if (blue) {
        g_led_control_registers[led.driver][control_register_b] |= (1 << bit_b);
    } else {
        g_led_control_registers[led.driver][control_register_b] &= ~(1 << bit_b);
    }

    g_led_control_registers_update_required[led.driver] = true;
}

void ckled2001_update_pwm_buffers(uint8_t addr, uint8_t index) {
    if (g_pwm_buffer_update_required[index]) {
        ckled2001_write_register(addr, CONFIGURE_CMD_PAGE, LED_PWM_PAGE);

        // If any of the transactions fail we risk writing dirty PG0,
        // refresh page 0 just in case.
        if (!ckled2001_write_pwm_buffer(addr, g_pwm_buffer[index])) {
            g_led_control_registers_update_required[index] = true;
        }
    }
    g_pwm_buffer_update_required[index] = false;
}

void ckled2001_update_led_control_registers(uint8_t addr, uint8_t index) {
    if (g_led_control_registers_update_required[index]) {
        ckled2001_write_register(addr, CONFIGURE_CMD_PAGE, LED_CONTROL_PAGE);
        for (int i = 0; i < 24; i++) {
            ckled2001_write_register(addr, i, g_led_control_registers[index][i]);
        }
    }
    g_led_control_registers_update_required[index] = false;
}

void ckled2001_sw_return_normal(uint8_t addr) {
    // Select to function page
    ckled2001_write_register(addr, CONFIGURE_CMD_PAGE, FUNCTION_PAGE);
    // Setting LED driver to normal mode
    ckled2001_write_register(addr, CONFIGURATION_REG, MSKSW_NORMAL_MODE);
}

void ckled2001_sw_shutdown(uint8_t addr) {
    // Select to function page
    ckled2001_write_register(addr, CONFIGURE_CMD_PAGE, FUNCTION_PAGE);
    // Setting LED driver to shutdown mode
    ckled2001_write_register(addr, CONFIGURATION_REG, MSKSW_SHUT_DOWN_MODE);
    // Write SW Sleep Register
    ckled2001_write_register(addr, SOFTWARE_SLEEP_REG, MSKSLEEP_ENABLE);
}