diff options
Diffstat (limited to 'index.html')
-rw-r--r-- | index.html | 7982 |
1 files changed, 7982 insertions, 0 deletions
diff --git a/index.html b/index.html new file mode 100644 index 0000000..f7f1716 --- /dev/null +++ b/index.html @@ -0,0 +1,7982 @@ +<!DOCTYPE HTML> +<html><head><meta charset="UTF-8"><title>Mapbox.Style</title><style>html,head,body { padding:0; margin:0; } +body { font-family: calibri, helvetica, arial, sans-serif; }</style><script type="text/javascript"> +(function() { +'use strict'; + +function F2(fun) +{ + function wrapper(a) { return function(b) { return fun(a,b); }; } + wrapper.arity = 2; + wrapper.func = fun; + return wrapper; +} + +function F3(fun) +{ + function wrapper(a) { + return function(b) { return function(c) { return fun(a, b, c); }; }; + } + wrapper.arity = 3; + wrapper.func = fun; + return wrapper; +} + +function F4(fun) +{ + function wrapper(a) { return function(b) { return function(c) { + return function(d) { return fun(a, b, c, d); }; }; }; + } + wrapper.arity = 4; + wrapper.func = fun; + return wrapper; +} + +function F5(fun) +{ + function wrapper(a) { return function(b) { return function(c) { + return function(d) { return function(e) { return fun(a, b, c, d, e); }; }; }; }; + } + wrapper.arity = 5; + wrapper.func = fun; + return wrapper; +} + +function F6(fun) +{ + function wrapper(a) { return function(b) { return function(c) { + return function(d) { return function(e) { return function(f) { + return fun(a, b, c, d, e, f); }; }; }; }; }; + } + wrapper.arity = 6; + wrapper.func = fun; + return wrapper; +} + +function F7(fun) +{ + function wrapper(a) { return function(b) { return function(c) { + return function(d) { return function(e) { return function(f) { + return function(g) { return fun(a, b, c, d, e, f, g); }; }; }; }; }; }; + } + wrapper.arity = 7; + wrapper.func = fun; + return wrapper; +} + +function F8(fun) +{ + function wrapper(a) { return function(b) { return function(c) { + return function(d) { return function(e) { return function(f) { + return function(g) { return function(h) { + return fun(a, b, c, d, e, f, g, h); }; }; }; }; }; }; }; + } + wrapper.arity = 8; + wrapper.func = fun; + return wrapper; +} + +function F9(fun) +{ + function wrapper(a) { return function(b) { return function(c) { + return function(d) { return function(e) { return function(f) { + return function(g) { return function(h) { return function(i) { + return fun(a, b, c, d, e, f, g, h, i); }; }; }; }; }; }; }; }; + } + wrapper.arity = 9; + wrapper.func = fun; + return wrapper; +} + +function A2(fun, a, b) +{ + return fun.arity === 2 + ? fun.func(a, b) + : fun(a)(b); +} +function A3(fun, a, b, c) +{ + return fun.arity === 3 + ? fun.func(a, b, c) + : fun(a)(b)(c); +} +function A4(fun, a, b, c, d) +{ + return fun.arity === 4 + ? fun.func(a, b, c, d) + : fun(a)(b)(c)(d); +} +function A5(fun, a, b, c, d, e) +{ + return fun.arity === 5 + ? fun.func(a, b, c, d, e) + : fun(a)(b)(c)(d)(e); +} +function A6(fun, a, b, c, d, e, f) +{ + return fun.arity === 6 + ? fun.func(a, b, c, d, e, f) + : fun(a)(b)(c)(d)(e)(f); +} +function A7(fun, a, b, c, d, e, f, g) +{ + return fun.arity === 7 + ? fun.func(a, b, c, d, e, f, g) + : fun(a)(b)(c)(d)(e)(f)(g); +} +function A8(fun, a, b, c, d, e, f, g, h) +{ + return fun.arity === 8 + ? fun.func(a, b, c, d, e, f, g, h) + : fun(a)(b)(c)(d)(e)(f)(g)(h); +} +function A9(fun, a, b, c, d, e, f, g, h, i) +{ + return fun.arity === 9 + ? fun.func(a, b, c, d, e, f, g, h, i) + : fun(a)(b)(c)(d)(e)(f)(g)(h)(i); +} +//import Native.List // + +var _elm_lang$core$Native_Array = function() { + +// A RRB-Tree has two distinct data types. +// Leaf -> "height" is always 0 +// "table" is an array of elements +// Node -> "height" is always greater than 0 +// "table" is an array of child nodes +// "lengths" is an array of accumulated lengths of the child nodes + +// M is the maximal table size. 32 seems fast. E is the allowed increase +// of search steps when concatting to find an index. Lower values will +// decrease balancing, but will increase search steps. +var M = 32; +var E = 2; + +// An empty array. +var empty = { + ctor: '_Array', + height: 0, + table: [] +}; + + +function get(i, array) +{ + if (i < 0 || i >= length(array)) + { + throw new Error( + 'Index ' + i + ' is out of range. Check the length of ' + + 'your array first or use getMaybe or getWithDefault.'); + } + return unsafeGet(i, array); +} + + +function unsafeGet(i, array) +{ + for (var x = array.height; x > 0; x--) + { + var slot = i >> (x * 5); + while (array.lengths[slot] <= i) + { + slot++; + } + if (slot > 0) + { + i -= array.lengths[slot - 1]; + } + array = array.table[slot]; + } + return array.table[i]; +} + + +// Sets the value at the index i. Only the nodes leading to i will get +// copied and updated. +function set(i, item, array) +{ + if (i < 0 || length(array) <= i) + { + return array; + } + return unsafeSet(i, item, array); +} + + +function unsafeSet(i, item, array) +{ + array = nodeCopy(array); + + if (array.height === 0) + { + array.table[i] = item; + } + else + { + var slot = getSlot(i, array); + if (slot > 0) + { + i -= array.lengths[slot - 1]; + } + array.table[slot] = unsafeSet(i, item, array.table[slot]); + } + return array; +} + + +function initialize(len, f) +{ + if (len <= 0) + { + return empty; + } + var h = Math.floor( Math.log(len) / Math.log(M) ); + return initialize_(f, h, 0, len); +} + +function initialize_(f, h, from, to) +{ + if (h === 0) + { + var table = new Array((to - from) % (M + 1)); + for (var i = 0; i < table.length; i++) + { + table[i] = f(from + i); + } + return { + ctor: '_Array', + height: 0, + table: table + }; + } + + var step = Math.pow(M, h); + var table = new Array(Math.ceil((to - from) / step)); + var lengths = new Array(table.length); + for (var i = 0; i < table.length; i++) + { + table[i] = initialize_(f, h - 1, from + (i * step), Math.min(from + ((i + 1) * step), to)); + lengths[i] = length(table[i]) + (i > 0 ? lengths[i-1] : 0); + } + return { + ctor: '_Array', + height: h, + table: table, + lengths: lengths + }; +} + +function fromList(list) +{ + if (list.ctor === '[]') + { + return empty; + } + + // Allocate M sized blocks (table) and write list elements to it. + var table = new Array(M); + var nodes = []; + var i = 0; + + while (list.ctor !== '[]') + { + table[i] = list._0; + list = list._1; + i++; + + // table is full, so we can push a leaf containing it into the + // next node. + if (i === M) + { + var leaf = { + ctor: '_Array', + height: 0, + table: table + }; + fromListPush(leaf, nodes); + table = new Array(M); + i = 0; + } + } + + // Maybe there is something left on the table. + if (i > 0) + { + var leaf = { + ctor: '_Array', + height: 0, + table: table.splice(0, i) + }; + fromListPush(leaf, nodes); + } + + // Go through all of the nodes and eventually push them into higher nodes. + for (var h = 0; h < nodes.length - 1; h++) + { + if (nodes[h].table.length > 0) + { + fromListPush(nodes[h], nodes); + } + } + + var head = nodes[nodes.length - 1]; + if (head.height > 0 && head.table.length === 1) + { + return head.table[0]; + } + else + { + return head; + } +} + +// Push a node into a higher node as a child. +function fromListPush(toPush, nodes) +{ + var h = toPush.height; + + // Maybe the node on this height does not exist. + if (nodes.length === h) + { + var node = { + ctor: '_Array', + height: h + 1, + table: [], + lengths: [] + }; + nodes.push(node); + } + + nodes[h].table.push(toPush); + var len = length(toPush); + if (nodes[h].lengths.length > 0) + { + len += nodes[h].lengths[nodes[h].lengths.length - 1]; + } + nodes[h].lengths.push(len); + + if (nodes[h].table.length === M) + { + fromListPush(nodes[h], nodes); + nodes[h] = { + ctor: '_Array', + height: h + 1, + table: [], + lengths: [] + }; + } +} + +// Pushes an item via push_ to the bottom right of a tree. +function push(item, a) +{ + var pushed = push_(item, a); + if (pushed !== null) + { + return pushed; + } + + var newTree = create(item, a.height); + return siblise(a, newTree); +} + +// Recursively tries to push an item to the bottom-right most +// tree possible. If there is no space left for the item, +// null will be returned. +function push_(item, a) +{ + // Handle resursion stop at leaf level. + if (a.height === 0) + { + if (a.table.length < M) + { + var newA = { + ctor: '_Array', + height: 0, + table: a.table.slice() + }; + newA.table.push(item); + return newA; + } + else + { + return null; + } + } + + // Recursively push + var pushed = push_(item, botRight(a)); + + // There was space in the bottom right tree, so the slot will + // be updated. + if (pushed !== null) + { + var newA = nodeCopy(a); + newA.table[newA.table.length - 1] = pushed; + newA.lengths[newA.lengths.length - 1]++; + return newA; + } + + // When there was no space left, check if there is space left + // for a new slot with a tree which contains only the item + // at the bottom. + if (a.table.length < M) + { + var newSlot = create(item, a.height - 1); + var newA = nodeCopy(a); + newA.table.push(newSlot); + newA.lengths.push(newA.lengths[newA.lengths.length - 1] + length(newSlot)); + return newA; + } + else + { + return null; + } +} + +// Converts an array into a list of elements. +function toList(a) +{ + return toList_(_elm_lang$core$Native_List.Nil, a); +} + +function toList_(list, a) +{ + for (var i = a.table.length - 1; i >= 0; i--) + { + list = + a.height === 0 + ? _elm_lang$core$Native_List.Cons(a.table[i], list) + : toList_(list, a.table[i]); + } + return list; +} + +// Maps a function over the elements of an array. +function map(f, a) +{ + var newA = { + ctor: '_Array', + height: a.height, + table: new Array(a.table.length) + }; + if (a.height > 0) + { + newA.lengths = a.lengths; + } + for (var i = 0; i < a.table.length; i++) + { + newA.table[i] = + a.height === 0 + ? f(a.table[i]) + : map(f, a.table[i]); + } + return newA; +} + +// Maps a function over the elements with their index as first argument. +function indexedMap(f, a) +{ + return indexedMap_(f, a, 0); +} + +function indexedMap_(f, a, from) +{ + var newA = { + ctor: '_Array', + height: a.height, + table: new Array(a.table.length) + }; + if (a.height > 0) + { + newA.lengths = a.lengths; + } + for (var i = 0; i < a.table.length; i++) + { + newA.table[i] = + a.height === 0 + ? A2(f, from + i, a.table[i]) + : indexedMap_(f, a.table[i], i == 0 ? from : from + a.lengths[i - 1]); + } + return newA; +} + +function foldl(f, b, a) +{ + if (a.height === 0) + { + for (var i = 0; i < a.table.length; i++) + { + b = A2(f, a.table[i], b); + } + } + else + { + for (var i = 0; i < a.table.length; i++) + { + b = foldl(f, b, a.table[i]); + } + } + return b; +} + +function foldr(f, b, a) +{ + if (a.height === 0) + { + for (var i = a.table.length; i--; ) + { + b = A2(f, a.table[i], b); + } + } + else + { + for (var i = a.table.length; i--; ) + { + b = foldr(f, b, a.table[i]); + } + } + return b; +} + +// TODO: currently, it slices the right, then the left. This can be +// optimized. +function slice(from, to, a) +{ + if (from < 0) + { + from += length(a); + } + if (to < 0) + { + to += length(a); + } + return sliceLeft(from, sliceRight(to, a)); +} + +function sliceRight(to, a) +{ + if (to === length(a)) + { + return a; + } + + // Handle leaf level. + if (a.height === 0) + { + var newA = { ctor:'_Array', height:0 }; + newA.table = a.table.slice(0, to); + return newA; + } + + // Slice the right recursively. + var right = getSlot(to, a); + var sliced = sliceRight(to - (right > 0 ? a.lengths[right - 1] : 0), a.table[right]); + + // Maybe the a node is not even needed, as sliced contains the whole slice. + if (right === 0) + { + return sliced; + } + + // Create new node. + var newA = { + ctor: '_Array', + height: a.height, + table: a.table.slice(0, right), + lengths: a.lengths.slice(0, right) + }; + if (sliced.table.length > 0) + { + newA.table[right] = sliced; + newA.lengths[right] = length(sliced) + (right > 0 ? newA.lengths[right - 1] : 0); + } + return newA; +} + +function sliceLeft(from, a) +{ + if (from === 0) + { + return a; + } + + // Handle leaf level. + if (a.height === 0) + { + var newA = { ctor:'_Array', height:0 }; + newA.table = a.table.slice(from, a.table.length + 1); + return newA; + } + + // Slice the left recursively. + var left = getSlot(from, a); + var sliced = sliceLeft(from - (left > 0 ? a.lengths[left - 1] : 0), a.table[left]); + + // Maybe the a node is not even needed, as sliced contains the whole slice. + if (left === a.table.length - 1) + { + return sliced; + } + + // Create new node. + var newA = { + ctor: '_Array', + height: a.height, + table: a.table.slice(left, a.table.length + 1), + lengths: new Array(a.table.length - left) + }; + newA.table[0] = sliced; + var len = 0; + for (var i = 0; i < newA.table.length; i++) + { + len += length(newA.table[i]); + newA.lengths[i] = len; + } + + return newA; +} + +// Appends two trees. +function append(a,b) +{ + if (a.table.length === 0) + { + return b; + } + if (b.table.length === 0) + { + return a; + } + + var c = append_(a, b); + + // Check if both nodes can be crunshed together. + if (c[0].table.length + c[1].table.length <= M) + { + if (c[0].table.length === 0) + { + return c[1]; + } + if (c[1].table.length === 0) + { + return c[0]; + } + + // Adjust .table and .lengths + c[0].table = c[0].table.concat(c[1].table); + if (c[0].height > 0) + { + var len = length(c[0]); + for (var i = 0; i < c[1].lengths.length; i++) + { + c[1].lengths[i] += len; + } + c[0].lengths = c[0].lengths.concat(c[1].lengths); + } + + return c[0]; + } + + if (c[0].height > 0) + { + var toRemove = calcToRemove(a, b); + if (toRemove > E) + { + c = shuffle(c[0], c[1], toRemove); + } + } + + return siblise(c[0], c[1]); +} + +// Returns an array of two nodes; right and left. One node _may_ be empty. +function append_(a, b) +{ + if (a.height === 0 && b.height === 0) + { + return [a, b]; + } + + if (a.height !== 1 || b.height !== 1) + { + if (a.height === b.height) + { + a = nodeCopy(a); + b = nodeCopy(b); + var appended = append_(botRight(a), botLeft(b)); + + insertRight(a, appended[1]); + insertLeft(b, appended[0]); + } + else if (a.height > b.height) + { + a = nodeCopy(a); + var appended = append_(botRight(a), b); + + insertRight(a, appended[0]); + b = parentise(appended[1], appended[1].height + 1); + } + else + { + b = nodeCopy(b); + var appended = append_(a, botLeft(b)); + + var left = appended[0].table.length === 0 ? 0 : 1; + var right = left === 0 ? 1 : 0; + insertLeft(b, appended[left]); + a = parentise(appended[right], appended[right].height + 1); + } + } + + // Check if balancing is needed and return based on that. + if (a.table.length === 0 || b.table.length === 0) + { + return [a, b]; + } + + var toRemove = calcToRemove(a, b); + if (toRemove <= E) + { + return [a, b]; + } + return shuffle(a, b, toRemove); +} + +// Helperfunctions for append_. Replaces a child node at the side of the parent. +function insertRight(parent, node) +{ + var index = parent.table.length - 1; + parent.table[index] = node; + parent.lengths[index] = length(node); + parent.lengths[index] += index > 0 ? parent.lengths[index - 1] : 0; +} + +function insertLeft(parent, node) +{ + if (node.table.length > 0) + { + parent.table[0] = node; + parent.lengths[0] = length(node); + + var len = length(parent.table[0]); + for (var i = 1; i < parent.lengths.length; i++) + { + len += length(parent.table[i]); + parent.lengths[i] = len; + } + } + else + { + parent.table.shift(); + for (var i = 1; i < parent.lengths.length; i++) + { + parent.lengths[i] = parent.lengths[i] - parent.lengths[0]; + } + parent.lengths.shift(); + } +} + +// Returns the extra search steps for E. Refer to the paper. +function calcToRemove(a, b) +{ + var subLengths = 0; + for (var i = 0; i < a.table.length; i++) + { + subLengths += a.table[i].table.length; + } + for (var i = 0; i < b.table.length; i++) + { + subLengths += b.table[i].table.length; + } + + var toRemove = a.table.length + b.table.length; + return toRemove - (Math.floor((subLengths - 1) / M) + 1); +} + +// get2, set2 and saveSlot are helpers for accessing elements over two arrays. +function get2(a, b, index) +{ + return index < a.length + ? a[index] + : b[index - a.length]; +} + +function set2(a, b, index, value) +{ + if (index < a.length) + { + a[index] = value; + } + else + { + b[index - a.length] = value; + } +} + +function saveSlot(a, b, index, slot) +{ + set2(a.table, b.table, index, slot); + + var l = (index === 0 || index === a.lengths.length) + ? 0 + : get2(a.lengths, a.lengths, index - 1); + + set2(a.lengths, b.lengths, index, l + length(slot)); +} + +// Creates a node or leaf with a given length at their arrays for perfomance. +// Is only used by shuffle. +function createNode(h, length) +{ + if (length < 0) + { + length = 0; + } + var a = { + ctor: '_Array', + height: h, + table: new Array(length) + }; + if (h > 0) + { + a.lengths = new Array(length); + } + return a; +} + +// Returns an array of two balanced nodes. +function shuffle(a, b, toRemove) +{ + var newA = createNode(a.height, Math.min(M, a.table.length + b.table.length - toRemove)); + var newB = createNode(a.height, newA.table.length - (a.table.length + b.table.length - toRemove)); + + // Skip the slots with size M. More precise: copy the slot references + // to the new node + var read = 0; + while (get2(a.table, b.table, read).table.length % M === 0) + { + set2(newA.table, newB.table, read, get2(a.table, b.table, read)); + set2(newA.lengths, newB.lengths, read, get2(a.lengths, b.lengths, read)); + read++; + } + + // Pulling items from left to right, caching in a slot before writing + // it into the new nodes. + var write = read; + var slot = new createNode(a.height - 1, 0); + var from = 0; + + // If the current slot is still containing data, then there will be at + // least one more write, so we do not break this loop yet. + while (read - write - (slot.table.length > 0 ? 1 : 0) < toRemove) + { + // Find out the max possible items for copying. + var source = get2(a.table, b.table, read); + var to = Math.min(M - slot.table.length, source.table.length); + + // Copy and adjust size table. + slot.table = slot.table.concat(source.table.slice(from, to)); + if (slot.height > 0) + { + var len = slot.lengths.length; + for (var i = len; i < len + to - from; i++) + { + slot.lengths[i] = length(slot.table[i]); + slot.lengths[i] += (i > 0 ? slot.lengths[i - 1] : 0); + } + } + + from += to; + + // Only proceed to next slots[i] if the current one was + // fully copied. + if (source.table.length <= to) + { + read++; from = 0; + } + + // Only create a new slot if the current one is filled up. + if (slot.table.length === M) + { + saveSlot(newA, newB, write, slot); + slot = createNode(a.height - 1, 0); + write++; + } + } + + // Cleanup after the loop. Copy the last slot into the new nodes. + if (slot.table.length > 0) + { + saveSlot(newA, newB, write, slot); + write++; + } + + // Shift the untouched slots to the left + while (read < a.table.length + b.table.length ) + { + saveSlot(newA, newB, write, get2(a.table, b.table, read)); + read++; + write++; + } + + return [newA, newB]; +} + +// Navigation functions +function botRight(a) +{ + return a.table[a.table.length - 1]; +} +function botLeft(a) +{ + return a.table[0]; +} + +// Copies a node for updating. Note that you should not use this if +// only updating only one of "table" or "lengths" for performance reasons. +function nodeCopy(a) +{ + var newA = { + ctor: '_Array', + height: a.height, + table: a.table.slice() + }; + if (a.height > 0) + { + newA.lengths = a.lengths.slice(); + } + return newA; +} + +// Returns how many items are in the tree. +function length(array) +{ + if (array.height === 0) + { + return array.table.length; + } + else + { + return array.lengths[array.lengths.length - 1]; + } +} + +// Calculates in which slot of "table" the item probably is, then +// find the exact slot via forward searching in "lengths". Returns the index. +function getSlot(i, a) +{ + var slot = i >> (5 * a.height); + while (a.lengths[slot] <= i) + { + slot++; + } + return slot; +} + +// Recursively creates a tree with a given height containing +// only the given item. +function create(item, h) +{ + if (h === 0) + { + return { + ctor: '_Array', + height: 0, + table: [item] + }; + } + return { + ctor: '_Array', + height: h, + table: [create(item, h - 1)], + lengths: [1] + }; +} + +// Recursively creates a tree that contains the given tree. +function parentise(tree, h) +{ + if (h === tree.height) + { + return tree; + } + + return { + ctor: '_Array', + height: h, + table: [parentise(tree, h - 1)], + lengths: [length(tree)] + }; +} + +// Emphasizes blood brotherhood beneath two trees. +function siblise(a, b) +{ + return { + ctor: '_Array', + height: a.height + 1, + table: [a, b], + lengths: [length(a), length(a) + length(b)] + }; +} + +function toJSArray(a) +{ + var jsArray = new Array(length(a)); + toJSArray_(jsArray, 0, a); + return jsArray; +} + +function toJSArray_(jsArray, i, a) +{ + for (var t = 0; t < a.table.length; t++) + { + if (a.height === 0) + { + jsArray[i + t] = a.table[t]; + } + else + { + var inc = t === 0 ? 0 : a.lengths[t - 1]; + toJSArray_(jsArray, i + inc, a.table[t]); + } + } +} + +function fromJSArray(jsArray) +{ + if (jsArray.length === 0) + { + return empty; + } + var h = Math.floor(Math.log(jsArray.length) / Math.log(M)); + return fromJSArray_(jsArray, h, 0, jsArray.length); +} + +function fromJSArray_(jsArray, h, from, to) +{ + if (h === 0) + { + return { + ctor: '_Array', + height: 0, + table: jsArray.slice(from, to) + }; + } + + var step = Math.pow(M, h); + var table = new Array(Math.ceil((to - from) / step)); + var lengths = new Array(table.length); + for (var i = 0; i < table.length; i++) + { + table[i] = fromJSArray_(jsArray, h - 1, from + (i * step), Math.min(from + ((i + 1) * step), to)); + lengths[i] = length(table[i]) + (i > 0 ? lengths[i - 1] : 0); + } + return { + ctor: '_Array', + height: h, + table: table, + lengths: lengths + }; +} + +return { + empty: empty, + fromList: fromList, + toList: toList, + initialize: F2(initialize), + append: F2(append), + push: F2(push), + slice: F3(slice), + get: F2(get), + set: F3(set), + map: F2(map), + indexedMap: F2(indexedMap), + foldl: F3(foldl), + foldr: F3(foldr), + length: length, + + toJSArray: toJSArray, + fromJSArray: fromJSArray +}; + +}();//import Native.Utils // + +var _elm_lang$core$Native_Basics = function() { + +function div(a, b) +{ + return (a / b) | 0; +} +function rem(a, b) +{ + return a % b; +} +function mod(a, b) +{ + if (b === 0) + { + throw new Error('Cannot perform mod 0. Division by zero error.'); + } + var r = a % b; + var m = a === 0 ? 0 : (b > 0 ? (a >= 0 ? r : r + b) : -mod(-a, -b)); + + return m === b ? 0 : m; +} +function logBase(base, n) +{ + return Math.log(n) / Math.log(base); +} +function negate(n) +{ + return -n; +} +function abs(n) +{ + return n < 0 ? -n : n; +} + +function min(a, b) +{ + return _elm_lang$core$Native_Utils.cmp(a, b) < 0 ? a : b; +} +function max(a, b) +{ + return _elm_lang$core$Native_Utils.cmp(a, b) > 0 ? a : b; +} +function clamp(lo, hi, n) +{ + return _elm_lang$core$Native_Utils.cmp(n, lo) < 0 + ? lo + : _elm_lang$core$Native_Utils.cmp(n, hi) > 0 + ? hi + : n; +} + +var ord = ['LT', 'EQ', 'GT']; + +function compare(x, y) +{ + return { ctor: ord[_elm_lang$core$Native_Utils.cmp(x, y) + 1] }; +} + +function xor(a, b) +{ + return a !== b; +} +function not(b) +{ + return !b; +} +function isInfinite(n) +{ + return n === Infinity || n === -Infinity; +} + +function truncate(n) +{ + return n | 0; +} + +function degrees(d) +{ + return d * Math.PI / 180; +} +function turns(t) +{ + return 2 * Math.PI * t; +} +function fromPolar(point) +{ + var r = point._0; + var t = point._1; + return _elm_lang$core$Native_Utils.Tuple2(r * Math.cos(t), r * Math.sin(t)); +} +function toPolar(point) +{ + var x = point._0; + var y = point._1; + return _elm_lang$core$Native_Utils.Tuple2(Math.sqrt(x * x + y * y), Math.atan2(y, x)); +} + +return { + div: F2(div), + rem: F2(rem), + mod: F2(mod), + + pi: Math.PI, + e: Math.E, + cos: Math.cos, + sin: Math.sin, + tan: Math.tan, + acos: Math.acos, + asin: Math.asin, + atan: Math.atan, + atan2: F2(Math.atan2), + + degrees: degrees, + turns: turns, + fromPolar: fromPolar, + toPolar: toPolar, + + sqrt: Math.sqrt, + logBase: F2(logBase), + negate: negate, + abs: abs, + min: F2(min), + max: F2(max), + clamp: F3(clamp), + compare: F2(compare), + + xor: F2(xor), + not: not, + + truncate: truncate, + ceiling: Math.ceil, + floor: Math.floor, + round: Math.round, + toFloat: function(x) { return x; }, + isNaN: isNaN, + isInfinite: isInfinite +}; + +}();//import // + +var _elm_lang$core$Native_Utils = function() { + +// COMPARISONS + +function eq(x, y) +{ + var stack = []; + var isEqual = eqHelp(x, y, 0, stack); + var pair; + while (isEqual && (pair = stack.pop())) + { + isEqual = eqHelp(pair.x, pair.y, 0, stack); + } + return isEqual; +} + + +function eqHelp(x, y, depth, stack) +{ + if (depth > 100) + { + stack.push({ x: x, y: y }); + return true; + } + + if (x === y) + { + return true; + } + + if (typeof x !== 'object') + { + if (typeof x === 'function') + { + throw new Error( + 'Trying to use `(==)` on functions. There is no way to know if functions are "the same" in the Elm sense.' + + ' Read more about this at http://package.elm-lang.org/packages/elm-lang/core/latest/Basics#==' + + ' which describes why it is this way and what the better version will look like.' + ); + } + return false; + } + + if (x === null || y === null) + { + return false + } + + if (x instanceof Date) + { + return x.getTime() === y.getTime(); + } + + if (!('ctor' in x)) + { + for (var key in x) + { + if (!eqHelp(x[key], y[key], depth + 1, stack)) + { + return false; + } + } + return true; + } + + // convert Dicts and Sets to lists + if (x.ctor === 'RBNode_elm_builtin' || x.ctor === 'RBEmpty_elm_builtin') + { + x = _elm_lang$core$Dict$toList(x); + y = _elm_lang$core$Dict$toList(y); + } + if (x.ctor === 'Set_elm_builtin') + { + x = _elm_lang$core$Set$toList(x); + y = _elm_lang$core$Set$toList(y); + } + + // check if lists are equal without recursion + if (x.ctor === '::') + { + var a = x; + var b = y; + while (a.ctor === '::' && b.ctor === '::') + { + if (!eqHelp(a._0, b._0, depth + 1, stack)) + { + return false; + } + a = a._1; + b = b._1; + } + return a.ctor === b.ctor; + } + + // check if Arrays are equal + if (x.ctor === '_Array') + { + var xs = _elm_lang$core$Native_Array.toJSArray(x); + var ys = _elm_lang$core$Native_Array.toJSArray(y); + if (xs.length !== ys.length) + { + return false; + } + for (var i = 0; i < xs.length; i++) + { + if (!eqHelp(xs[i], ys[i], depth + 1, stack)) + { + return false; + } + } + return true; + } + + if (!eqHelp(x.ctor, y.ctor, depth + 1, stack)) + { + return false; + } + + for (var key in x) + { + if (!eqHelp(x[key], y[key], depth + 1, stack)) + { + return false; + } + } + return true; +} + +// Code in Generate/JavaScript.hs, Basics.js, and List.js depends on +// the particular integer values assigned to LT, EQ, and GT. + +var LT = -1, EQ = 0, GT = 1; + +function cmp(x, y) +{ + if (typeof x !== 'object') + { + return x === y ? EQ : x < y ? LT : GT; + } + + if (x instanceof String) + { + var a = x.valueOf(); + var b = y.valueOf(); + return a === b ? EQ : a < b ? LT : GT; + } + + if (x.ctor === '::' || x.ctor === '[]') + { + while (x.ctor === '::' && y.ctor === '::') + { + var ord = cmp(x._0, y._0); + if (ord !== EQ) + { + return ord; + } + x = x._1; + y = y._1; + } + return x.ctor === y.ctor ? EQ : x.ctor === '[]' ? LT : GT; + } + + if (x.ctor.slice(0, 6) === '_Tuple') + { + var ord; + var n = x.ctor.slice(6) - 0; + var err = 'cannot compare tuples with more than 6 elements.'; + if (n === 0) return EQ; + if (n >= 1) { ord = cmp(x._0, y._0); if (ord !== EQ) return ord; + if (n >= 2) { ord = cmp(x._1, y._1); if (ord !== EQ) return ord; + if (n >= 3) { ord = cmp(x._2, y._2); if (ord !== EQ) return ord; + if (n >= 4) { ord = cmp(x._3, y._3); if (ord !== EQ) return ord; + if (n >= 5) { ord = cmp(x._4, y._4); if (ord !== EQ) return ord; + if (n >= 6) { ord = cmp(x._5, y._5); if (ord !== EQ) return ord; + if (n >= 7) throw new Error('Comparison error: ' + err); } } } } } } + return EQ; + } + + throw new Error( + 'Comparison error: comparison is only defined on ints, ' + + 'floats, times, chars, strings, lis |