/*----------------------------------------------------------------------* * File: rxvtimg.C *----------------------------------------------------------------------* * * All portions of code are copyright by their respective author/s. * Copyright (c) 2012 Marc Lehmann * Copyright (c) 2012 Emanuele Giaquinta * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *---------------------------------------------------------------------*/ #include #include #include "../config.h" #include "rxvt.h" #if HAVE_IMG typedef rxvt_img::nv nv; namespace { struct mat3x3 { nv v[3][3]; mat3x3 () { } mat3x3 (const nv *matrix) { memcpy (v, matrix, sizeof (v)); } mat3x3 (nv v11, nv v12, nv v13, nv v21, nv v22, nv v23, nv v31, nv v32, nv v33) { v[0][0] = v11; v[0][1] = v12; v[0][2] = v13; v[1][0] = v21; v[1][1] = v22; v[1][2] = v23; v[2][0] = v31; v[2][1] = v32; v[2][2] = v33; } mat3x3 inverse (); nv *operator [](int i) { return &v[i][0]; } const nv *operator [](int i) const { return &v[i][0]; } operator const nv * () const { return &v[0][0]; } operator nv * () { return &v[0][0]; } // quite inefficient, hopefully gcc pulls the w calc out of any loops nv apply1 (int i, nv x, nv y) { mat3x3 &m = *this; nv v = m[i][0] * x + m[i][1] * y + m[i][2]; nv w = m[2][0] * x + m[2][1] * y + m[2][2]; return v * (1. / w); } static mat3x3 translate (nv x, nv y); static mat3x3 scale (nv s, nv t); static mat3x3 rotate (nv phi); }; mat3x3 mat3x3::inverse () { mat3x3 &m = *this; mat3x3 inv; nv s0 = m[2][2] * m[1][1] - m[2][1] * m[1][2]; nv s1 = m[2][1] * m[0][2] - m[2][2] * m[0][1]; nv s2 = m[1][2] * m[0][1] - m[1][1] * m[0][2]; nv invdet = 1. / (m[0][0] * s0 + m[1][0] * s1 + m[2][0] * s2); inv[0][0] = invdet * s0; inv[0][1] = invdet * s1; inv[0][2] = invdet * s2; inv[1][0] = invdet * (m[2][0] * m[1][2] - m[2][2] * m[1][0]); inv[1][1] = invdet * (m[2][2] * m[0][0] - m[2][0] * m[0][2]); inv[1][2] = invdet * (m[1][0] * m[0][2] - m[1][2] * m[0][0]); inv[2][0] = invdet * (m[2][1] * m[1][0] - m[2][0] * m[1][1]); inv[2][1] = invdet * (m[2][0] * m[0][1] - m[2][1] * m[0][0]); inv[2][2] = invdet * (m[1][1] * m[0][0] - m[1][0] * m[0][1]); return inv; } static mat3x3 operator *(const mat3x3 &a, const mat3x3 &b) { mat3x3 r; for (int i = 0; i < 3; ++i) for (int j = 0; j < 3; ++j) r[i][j] = a[i][0] * b[0][j] + a[i][1] * b[1][j] + a[i][2] * b[2][j]; return r; } mat3x3 mat3x3::translate (nv x, nv y) { return mat3x3 ( 1, 0, x, 0, 1, y, 0, 0, 1 ); } mat3x3 mat3x3::scale (nv s, nv t) { return mat3x3 ( s, 0, 0, 0, t, 0, 0, 0, 1 ); } // clockwise mat3x3 mat3x3::rotate (nv phi) { nv s = sin (phi); nv c = cos (phi); return mat3x3 ( c, -s, 0, s, c, 0, 0, 0, 1 ); } struct composer { rxvt_img *srcimg, *dstimg; Picture src, dst, msk; Display *dpy; ecb_noinline composer (rxvt_img *srcimg, rxvt_img *dstimg = 0) : srcimg (srcimg), dstimg (dstimg), msk (0) { if (!this->dstimg) this->dstimg = srcimg->new_empty (); else if (!this->dstimg->pm) // somewhat unsatisfying this->dstimg->alloc (); dpy = srcimg->d->dpy; src = srcimg->picture (); dst = this->dstimg->picture (); } ecb_noinline void mask (bool rgb = true, int w = 1, int h = 1) { Pixmap pixmap = XCreatePixmap (dpy, srcimg->pm, w, h, rgb ? 32 : 8); XRenderPictFormat *format = XRenderFindStandardFormat (dpy, rgb ? PictStandardARGB32 : PictStandardA8); XRenderPictureAttributes pa; pa.repeat = RepeatNormal; pa.component_alpha = rgb; msk = XRenderCreatePicture (dpy, pixmap, format, CPRepeat | CPComponentAlpha, &pa); XFreePixmap (dpy, pixmap); ecb_assume (msk); } // CreateSolidFill creates a very very very weird picture void mask (const rgba &c) { // the casts are needed in C++11 (see 8.5.1) XRenderColor rc = { (unsigned short)(c.r * c.a / 65535), (unsigned short)(c.g * c.a / 65535), (unsigned short)(c.b * c.a / 65535), c.a }; msk = XRenderCreateSolidFill (dpy, &rc); ecb_assume (msk); } void fill (const rgba &c) { XRenderColor rc = { (unsigned short)(c.r * c.a / 65535), (unsigned short)(c.g * c.a / 65535), (unsigned short)(c.b * c.a / 65535), c.a }; XRenderFillRectangle (dpy, PictOpSrc, msk, &rc, 0, 0, 1, 1); } operator rxvt_img *() { return dstimg; } ecb_noinline ~composer () { XRenderFreePicture (dpy, src); XRenderFreePicture (dpy, dst); if (msk) XRenderFreePicture (dpy, msk); } }; } static XRenderPictFormat * find_alpha_format_for (Display *dpy, XRenderPictFormat *format) { if (format->direct.alphaMask) return format; // already has alpha // try to find a suitable alpha format, one bit alpha is enough for our purposes if (format->type == PictTypeDirect) for (int n = 0; XRenderPictFormat *f = XRenderFindFormat (dpy, 0, 0, n); ++n) if (f->direct.alphaMask && f->type == PictTypeDirect && ecb_popcount32 (f->direct.redMask ) >= ecb_popcount32 (format->direct.redMask ) && ecb_popcount32 (f->direct.greenMask) >= ecb_popcount32 (format->direct.greenMask) && ecb_popcount32 (f->direct.blueMask ) >= ecb_popcount32 (format->direct.blueMask )) return f; // should be a very good fallback return XRenderFindStandardFormat (dpy, PictStandardARGB32); } rxvt_img::rxvt_img (rxvt_screen *screen, XRenderPictFormat *format, int x, int y, int width, int height, int repeat) : d(screen->display), x(x), y(y), w(width), h(height), format(format), repeat(repeat), pm(0), ref(0) { } rxvt_img::rxvt_img (rxvt_display *display, XRenderPictFormat *format, int x, int y, int width, int height, int repeat) : d(display), x(x), y(y), w(width), h(height), format(format), repeat(repeat), pm(0), ref(0) { } rxvt_img::rxvt_img (const rxvt_img &img) : d(img.d), x(img.x), y(img.y), w(img.w), h(img.h), format(img.format), repeat(img.repeat), pm(img.pm), ref(img.ref) { ++ref->cnt; } rxvt_img * rxvt_img::new_from_root (rxvt_screen *s) { Display *dpy = s->dpy; unsigned int root_pm_w, root_pm_h; Pixmap root_pixmap = s->display->get_pixmap_property (s->display->xa [XA_XROOTPMAP_ID]); if (root_pixmap == None) root_pixmap = s->display->get_pixmap_property (s->display->xa [XA_ESETROOT_PMAP_ID]); if (root_pixmap == None) return 0; Window wdummy; int idummy; unsigned int udummy; if (!XGetGeometry (dpy, root_pixmap, &wdummy, &idummy, &idummy, &root_pm_w, &root_pm_h, &udummy, &udummy)) return 0; rxvt_img *img = new rxvt_img ( s, XRenderFindVisualFormat (dpy, DefaultVisual (dpy, s->display->screen)), 0, 0, root_pm_w, root_pm_h ); img->pm = root_pixmap; img->ref = new pixref (root_pm_w, root_pm_h); img->ref->ours = false; return img; } # if HAVE_PIXBUF rxvt_img * rxvt_img::new_from_pixbuf (rxvt_screen *s, GdkPixbuf *pb) { Display *dpy = s->dpy; int width = gdk_pixbuf_get_width (pb); int height = gdk_pixbuf_get_height (pb); if (width > 32767 || height > 32767) // well, we *could* upload in chunks rxvt_fatal ("rxvt_img::new_from_pixbuf: image too big (maximum size 32768x32768).\n"); // since we require rgb24/argb32 formats from xrender we assume // that both 24 and 32 bpp MUST be supported by any screen that supports xrender int byte_order = ecb_big_endian () ? MSBFirst : LSBFirst; XImage xi; xi.width = width; xi.height = height; xi.xoffset = 0; xi.format = ZPixmap; xi.byte_order = ImageByteOrder (dpy); xi.bitmap_unit = 0; //XY only, unused xi.bitmap_bit_order = 0; //XY only, unused xi.bitmap_pad = BitmapPad (dpy); xi.depth = 32; xi.bytes_per_line = 0; xi.bits_per_pixel = 32; //Z only xi.red_mask = 0x00000000; //Z only, unused xi.green_mask = 0x00000000; //Z only, unused xi.blue_mask = 0x00000000; //Z only, unused xi.obdata = 0; // probably unused bool byte_order_mismatch = byte_order != xi.byte_order; if (!XInitImage (&xi)) rxvt_fatal ("unable to initialise ximage, please report.\n"); if (height > INT_MAX / xi.bytes_per_line) rxvt_fatal ("rxvt_img::new_from_pixbuf: image too big for Xlib.\n"); xi.data = (char *)rxvt_malloc (height * xi.bytes_per_line); int rowstride = gdk_pixbuf_get_rowstride (pb); bool pb_has_alpha = gdk_pixbuf_get_has_alpha (pb); unsigned char *row = gdk_pixbuf_get_pixels (pb); char *line = xi.data; for (int y = 0; y < height; y++) { unsigned char *src = row; uint32_t *dst = (uint32_t *)line; for (int x = 0; x < width; x++) { uint8_t r = *src++; uint8_t g = *src++; uint8_t b = *src++; uint8_t a = *src; // this is done so it can be jump-free, but newer gcc's clone inner the loop a = pb_has_alpha ? a : 255; src += pb_has_alpha; r = (r * a + 127) / 255; g = (g * a + 127) / 255; b = (b * a + 127) / 255; uint32_t v = (a << 24) | (r << 16) | (g << 8) | b; if (ecb_big_endian () ? !byte_order_mismatch : byte_order_mismatch) v = ecb_bswap32 (v); *dst++ = v; } row += rowstride; line += xi.bytes_per_line; } rxvt_img *img = new rxvt_img (s, XRenderFindStandardFormat (dpy, PictStandardARGB32), 0, 0, width, height); img->alloc (); GC gc = XCreateGC (dpy, img->pm, 0, 0); XPutImage (dpy, img->pm, gc, &xi, 0, 0, 0, 0, width, height); XFreeGC (dpy, gc); free (xi.data); return img; } rxvt_img * rxvt_img::new_from_file (rxvt_screen *s, const char *filename) { GError *err = 0; GdkPixbuf *pb = gdk_pixbuf_new_from_file (filename, &err); if (!pb) rxvt_fatal ("rxvt_img::new_from_file: %s\n", err->message); rxvt_img *img = new_from_pixbuf (s, pb); g_object_unref (pb); return img; } # endif void rxvt_img::destroy () { if (--ref->cnt) return; if (pm && ref->ours) XFreePixmap (d->dpy, pm); delete ref; } rxvt_img::~rxvt_img () { destroy (); } void rxvt_img::alloc () { pm = XCreatePixmap (d->dpy, d->root, w, h, format->depth); ref = new pixref (w, h); } rxvt_img * rxvt_img::new_empty () { rxvt_img *img = new rxvt_img (d, format, x, y, w, h, repeat); img->alloc (); return img; } Picture rxvt_img::picture () { Display *dpy = d->dpy; XRenderPictureAttributes pa; pa.repeat = repeat; Picture pic = XRenderCreatePicture (dpy, pm, format, CPRepeat, &pa); return pic; } void rxvt_img::unshare () { if (ref->cnt == 1 && ref->ours) return; Pixmap pm2 = XCreatePixmap (d->dpy, d->root, ref->w, ref->h, format->depth); GC gc = XCreateGC (d->dpy, pm, 0, 0); XCopyArea (d->dpy, pm, pm2, gc, 0, 0, ref->w, ref->h, 0, 0); XFreeGC (d->dpy, gc); destroy (); pm = pm2; ref = new pixref (ref->w, ref->h); } void rxvt_img::fill (const rgba &c, int x, int y, int w, int h) { XRenderColor rc = { c.r, c.g, c.b, c.a }; Display *dpy = d->dpy; Picture src = picture (); XRenderFillRectangle (dpy, PictOpSrc, src, &rc, x, y, w, h); XRenderFreePicture (dpy, src); } void rxvt_img::fill (const rgba &c) { fill (c, 0, 0, w, h); } void rxvt_img::add_alpha () { if (format->direct.alphaMask) return; composer cc (this, new rxvt_img (d, find_alpha_format_for (d->dpy, format), x, y, w, h, repeat)); XRenderComposite (cc.dpy, PictOpSrc, cc.src, None, cc.dst, 0, 0, 0, 0, 0, 0, w, h); rxvt_img *img = cc; ::swap (img->ref, ref); ::swap (img->pm , pm ); delete img; } static void get_gaussian_kernel (int radius, int width, nv *kernel, XFixed *params) { nv sigma = radius / 2.0; nv scale = sqrt (2.0 * M_PI) * sigma; nv sum = 0.0; for (int i = 0; i < width; i++) { nv x = i - width / 2; kernel[i] = exp (-(x * x) / (2.0 * sigma * sigma)) / scale; sum += kernel[i]; } params[0] = XDoubleToFixed (width); params[1] = XDoubleToFixed (1); for (int i = 0; i < width; i++) params[i+2] = XDoubleToFixed (kernel[i] / sum); } rxvt_img * rxvt_img::blur (int rh, int rv) { if (!(d->flags & DISPLAY_HAS_RENDER_CONV)) return clone (); Display *dpy = d->dpy; int size = max (rh, rv) * 2 + 1; nv *kernel = (nv *)malloc (size * sizeof (nv)); XFixed *params = rxvt_temp_buf (size + 2); rxvt_img *img = new_empty (); XRenderPictureAttributes pa; pa.repeat = RepeatPad; Picture src = XRenderCreatePicture (dpy, pm, format, CPRepeat, &pa); Picture dst = XRenderCreatePicture (dpy, img->pm, format, 0, 0); Pixmap tmp_pm = XCreatePixmap (dpy, pm, w, h, format->depth); Picture tmp = XRenderCreatePicture (dpy, tmp_pm , format, CPRepeat, &pa); XFreePixmap (dpy, tmp_pm); if (kernel && params) { size = rh * 2 + 1; get_gaussian_kernel (rh, size, kernel, params); XRenderSetPictureFilter (dpy, src, FilterConvolution, params, size+2); XRenderComposite (dpy, PictOpSrc, src, None, tmp, 0, 0, 0, 0, 0, 0, w, h); size = rv * 2 + 1; get_gaussian_kernel (rv, size, kernel, params); ::swap (params[0], params[1]); XRenderSetPictureFilter (dpy, tmp, FilterConvolution, params, size+2); XRenderComposite (dpy, PictOpSrc, tmp, None, dst, 0, 0, 0, 0, 0, 0, w, h); } free (kernel); XRenderFreePicture (dpy, src); XRenderFreePicture (dpy, dst); XRenderFreePicture (dpy, tmp); return img; } rxvt_img * rxvt_img::muladd (nv mul, nv add) { // STEP 1: double the image width, fill all odd columns with white (==1) composer cc (this, new rxvt_img (d, format, 0, 0, w * 2, h, repeat)); // why the hell does XRenderSetPictureTransform want a writable matrix :( // that keeps us from just static const'ing this matrix. XTransform h_double = { 0x08000, 0, 0, 0, 0x10000, 0, 0, 0, 0x10000 }; XRenderSetPictureFilter (cc.dpy, cc.src, "nearest", 0, 0); XRenderSetPictureTransform (cc.dpy, cc.src, &h_double); XRenderComposite (cc.dpy, PictOpSrc, cc.src, None, cc.dst, 0, 0, 0, 0, 0, 0, w * 2, h); cc.mask (false, 2, 1); static const XRenderColor c0 = { 0, 0, 0, 0 }; XRenderFillRectangle (cc.dpy, PictOpSrc, cc.msk, &c0, 0, 0, 1, 1); static const XRenderColor c1 = { 65535, 65535, 65535, 65535 }; XRenderFillRectangle (cc.dpy, PictOpSrc, cc.msk, &c1, 1, 0, 1, 1); Picture white = XRenderCreateSolidFill (cc.dpy, &c1); XRenderComposite (cc.dpy, PictOpOver, white, cc.msk, cc.dst, 0, 0, 0, 0, 0, 0, w * 2, h); XRenderFreePicture (cc.dpy, white); // STEP 2: convolve the image with a 3x1 filter // a 2x1 filter would obviously suffice, but given the total lack of specification // for xrender, I expect different xrender implementations to randomly diverge. // we also halve the image, and hope for the best (again, for lack of specs). composer cc2 (cc.dstimg); XFixed kernel [] = { XDoubleToFixed (3), XDoubleToFixed (1), XDoubleToFixed (0), XDoubleToFixed (mul), XDoubleToFixed (add) }; XTransform h_halve = { 0x20000, 0, 0, 0, 0x10000, 0, 0, 0, 0x10000 }; XRenderSetPictureFilter (cc.dpy, cc2.src, "nearest", 0, 0); XRenderSetPictureTransform (cc.dpy, cc2.src, &h_halve); XRenderSetPictureFilter (cc.dpy, cc2.src, FilterConvolution, kernel, ecb_array_length (kernel)); XRenderComposite (cc.dpy, PictOpSrc, cc2.src, None, cc2.dst, 0, 0, 0, 0, 0, 0, w * 2, h); return cc2; } ecb_noinline static void extract (int32_t cl0, int32_t cl1, int32_t &c, unsigned short &xc) { int32_t x = clamp (c, cl0, cl1); c -= x; xc = x; } ecb_noinline static bool extract (int32_t cl0, int32_t cl1, int32_t &r, int32_t &g, int32_t &b, int32_t &a, unsigned short &xr, unsigned short &xg, unsigned short &xb, unsigned short &xa) { extract (cl0, cl1, r, xr); extract (cl0, cl1, g, xg); extract (cl0, cl1, b, xb); extract (cl0, cl1, a, xa); return xr | xg | xb | xa; } void rxvt_img::brightness (int32_t r, int32_t g, int32_t b, int32_t a) { unshare (); Display *dpy = d->dpy; Picture dst = XRenderCreatePicture (dpy, pm, format, 0, 0); // loop should not be needed for brightness, as only -1..1 makes sense //while (r | g | b | a) { unsigned short xr, xg, xb, xa; XRenderColor mask_c; if (extract (0, 65535, r, g, b, a, mask_c.red, mask_c.green, mask_c.blue, mask_c.alpha)) XRenderFillRectangle (dpy, PictOpAdd, dst, &mask_c, 0, 0, w, h); if (extract (-65535, 0, r, g, b, a, mask_c.red, mask_c.green, mask_c.blue, mask_c.alpha)) { XRenderColor mask_w = { 65535, 65535, 65535, 65535 }; XRenderFillRectangle (dpy, PictOpDifference, dst, &mask_w, 0, 0, w, h); mask_c.red = -mask_c.red; //TODO: verify that doing clamp, assign, and negation does the right thing mask_c.green = -mask_c.green; mask_c.blue = -mask_c.blue; mask_c.alpha = -mask_c.alpha; XRenderFillRectangle (dpy, PictOpAdd, dst, &mask_c, 0, 0, w, h); XRenderFillRectangle (dpy, PictOpDifference, dst, &mask_w, 0, 0, w, h); } } XRenderFreePicture (dpy, dst); } void rxvt_img::contrast (int32_t r, int32_t g, int32_t b, int32_t a) { if (r < 0 || g < 0 || b < 0 || a < 0) rxvt_fatal ("rxvt_img::contrast does not support negative values.\n"); // premultiply (yeah, these are not exact, sue me or fix it) r = (r * (a >> 8)) >> 8; g = (g * (a >> 8)) >> 8; b = (b * (a >> 8)) >> 8; composer cc (this); rxvt_img *img = cc; img->fill (rgba (0, 0, 0, 0)); cc.mask (true); //TODO: this operator does not yet implement some useful contrast while (r | g | b | a) { unsigned short xr, xg, xb, xa; XRenderColor mask_c; if (extract (0, 65535, r, g, b, a, mask_c.red, mask_c.green, mask_c.blue, mask_c.alpha)) { XRenderFillRectangle (cc.dpy, PictOpSrc, cc.msk, &mask_c, 0, 0, 1, 1); XRenderComposite (cc.dpy, PictOpAdd, cc.src, cc.msk, cc.dst, 0, 0, 0, 0, 0, 0, w, h); } } ::swap (img->ref, ref); ::swap (img->pm , pm ); delete img; } void rxvt_img::draw (rxvt_img *img, int op, nv mask) { unshare (); composer cc (img, this); if (mask != 1.) cc.mask (rgba (0, 0, 0, float_to_component (mask))); XRenderComposite (cc.dpy, op, cc.src, cc.msk, cc.dst, x - img->x, y - img->y, 0, 0, 0, 0, w, h); } rxvt_img * rxvt_img::clone () { return new rxvt_img (*this); } rxvt_img * rxvt_img::reify () { if (x == 0 && y == 0 && w == ref->w && h == ref->h) return clone (); // add an alpha channel if... bool alpha = !format->direct.alphaMask // pixmap has none yet && (x || y) // we need one because of non-zero offset && repeat == RepeatNone; // and we have no good pixels to fill with composer cc (this, new rxvt_img (d, alpha ? find_alpha_format_for (d->dpy, format) : format, 0, 0, w, h, repeat)); if (repeat == RepeatNone) { XRenderColor rc = { 0, 0, 0, 0 }; XRenderFillRectangle (cc.dpy, PictOpSrc, cc.dst, &rc, 0, 0, w, h);//TODO: split into four fillrectangles XRenderComposite (cc.dpy, PictOpSrc, cc.src, None, cc.dst, 0, 0, 0, 0, x, y, ref->w, ref->h); } else XRenderComposite (cc.dpy, PictOpSrc, cc.src, None, cc.dst, -x, -y, 0, 0, 0, 0, w, h); return cc; } rxvt_img * rxvt_img::sub_rect (int x, int y, int width, int height) { rxvt_img *img = clone (); img->x -= x; img->y -= y; if (w != width || h != height) { img->w = width; img->h = height; rxvt_img *img2 = img->reify (); delete img; img = img2; } return img; } rxvt_img * rxvt_img::transform (const nv matrix[3][3]) { return transform (mat3x3 (&matrix[0][0])); } rxvt_img * rxvt_img::transform (const nv *matrix) { mat3x3 m (matrix); // calculate new pixel bounding box coordinates nv rmin[2], rmax[2]; for (int i = 0; i < 2; ++i) { nv v; v = m.apply1 (i, 0+x, 0+y); rmin [i] = rmax [i] = v; v = m.apply1 (i, w+x, 0+y); min_it (rmin [i], v); max_it (rmax [i], v); v = m.apply1 (i, 0+x, h+y); min_it (rmin [i], v); max_it (rmax [i], v); v = m.apply1 (i, w+x, h+y); min_it (rmin [i], v); max_it (rmax [i], v); } float sx = rmin [0] - x; float sy = rmin [1] - y; // TODO: adjust matrix for subpixel accuracy int nx = floor (rmin [0]); int ny = floor (rmin [1]); int new_width = ceil (rmax [0] - rmin [0]); int new_height = ceil (rmax [1] - rmin [1]); mat3x3 inv = (mat3x3::translate (-x, -y) * m * mat3x3::translate (x, y)).inverse (); composer cc (this, new rxvt_img (d, format, nx, ny, new_width, new_height, repeat)); XTransform xfrm; for (int i = 0; i < 3; ++i) for (int j = 0; j < 3; ++j) xfrm.matrix [i][j] = XDoubleToFixed (inv [i][j]); XRenderSetPictureFilter (cc.dpy, cc.src, "good", 0, 0); XRenderSetPictureTransform (cc.dpy, cc.src, &xfrm); XRenderComposite (cc.dpy, PictOpSrc, cc.src, None, cc.dst, sx, sy, 0, 0, 0, 0, new_width, new_height); return cc; } rxvt_img * rxvt_img::scale (int new_width, int new_height) { if (w == new_width && h == new_height) return clone (); int old_repeat_mode = repeat; repeat = RepeatPad; // not right, but xrender can't properly scale it seems rxvt_img *img = transform (mat3x3::scale (new_width / (nv)w, new_height / (nv)h)); repeat = old_repeat_mode; img->repeat = repeat; return img; } rxvt_img * rxvt_img::rotate (int cx, int cy, nv phi) { move (-cx, -cy); rxvt_img *img = transform (mat3x3::rotate (phi)); move ( cx, cy); img->move (cx, cy); return img; } rxvt_img * rxvt_img::convert_format (XRenderPictFormat *new_format, const rgba &bg) { if (new_format == format) return clone (); composer cc (this, new rxvt_img (d, new_format, x, y, w, h, repeat)); int op = PictOpSrc; if (format->direct.alphaMask && !new_format->direct.alphaMask) { // does it have to be that complicated XRenderColor rc = { bg.r, bg.g, bg.b, bg.a }; XRenderFillRectangle (cc.dpy, PictOpSrc, cc.dst, &rc, 0, 0, w, h); op = PictOpOver; } XRenderComposite (cc.dpy, op, cc.src, None, cc.dst, 0, 0, 0, 0, 0, 0, w, h); return cc; } rxvt_img * rxvt_img::tint (const rgba &c) { composer cc (this); cc.mask (true); cc.fill (c); XRenderComposite (cc.dpy, PictOpSrc, cc.src, cc.msk, cc.dst, 0, 0, 0, 0, 0, 0, w, h); return cc; } rxvt_img * rxvt_img::shade (nv factor, rgba c) { clamp_it (factor, -1., 1.); factor++; if (factor > 1) { c.r = c.r * (2 - factor); c.g = c.g * (2 - factor); c.b = c.b * (2 - factor); } else { c.r = c.r * factor; c.g = c.g * factor; c.b = c.b * factor; } rxvt_img *img = this->tint (c); if (factor > 1) { c.a = 0xffff; c.r = c.g = c.b = 0xffff * (factor - 1); img->brightness (c.r, c.g, c.b, c.a); } return img; } rxvt_img * rxvt_img::filter (const char *name, int nparams, nv *params) { composer cc (this); XFixed *xparams = rxvt_temp_buf (nparams); for (int i = 0; i < nparams; ++i) xparams [i] = XDoubleToFixed (params [i]); XRenderSetPictureFilter (cc.dpy, cc.src, name, xparams, nparams); XRenderComposite (cc.dpy, PictOpSrc, cc.src, 0, cc.dst, 0, 0, 0, 0, 0, 0, w, h); return cc; } #endif