summaryrefslogtreecommitdiffstats
path: root/quantum/split_common/transactions.c
blob: 28ea4ef6d85e7fa19327bae972cec438e8b1fe78 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
/* Copyright 2021 QMK
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include <string.h>
#include <stddef.h>

#include "crc.h"
#include "debug.h"
#include "matrix.h"
#include "quantum.h"
#include "transactions.h"
#include "transport.h"
#include "split_util.h"
#include "transaction_id_define.h"

#define SYNC_TIMER_OFFSET 2

#ifndef FORCED_SYNC_THROTTLE_MS
#    define FORCED_SYNC_THROTTLE_MS 100
#endif  // FORCED_SYNC_THROTTLE_MS

#define sizeof_member(type, member) sizeof(((type *)NULL)->member)

#define trans_initiator2target_initializer_cb(member, cb) \
    { &dummy, sizeof_member(split_shared_memory_t, member), offsetof(split_shared_memory_t, member), 0, 0, cb }
#define trans_initiator2target_initializer(member) trans_initiator2target_initializer_cb(member, NULL)

#define trans_target2initiator_initializer_cb(member, cb) \
    { &dummy, 0, 0, sizeof_member(split_shared_memory_t, member), offsetof(split_shared_memory_t, member), cb }
#define trans_target2initiator_initializer(member) trans_target2initiator_initializer_cb(member, NULL)

#define transport_write(id, data, length)          transport_execute_transaction(id, data, length, NULL, 0)
#define transport_read(id, data, length)           transport_execute_transaction(id, NULL, 0, data, length)

#if defined(SPLIT_TRANSACTION_IDS_KB) || defined(SPLIT_TRANSACTION_IDS_USER)
// Forward-declare the RPC callback handlers
void slave_rpc_info_callback(uint8_t initiator2target_buffer_size, const void *initiator2target_buffer, uint8_t target2initiator_buffer_size, void *target2initiator_buffer);
void slave_rpc_exec_callback(uint8_t initiator2target_buffer_size, const void *initiator2target_buffer, uint8_t target2initiator_buffer_size, void *target2initiator_buffer);
#endif  // defined(SPLIT_TRANSACTION_IDS_KB) || defined(SPLIT_TRANSACTION_IDS_USER)

////////////////////////////////////////////////////
// Helpers

static bool transaction_handler_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[], const char *prefix, bool (*handler)(matrix_row_t master_matrix[], matrix_row_t slave_matrix[])) {
    int num_retries = is_transport_connected() ? 10 : 1;
    for (int iter = 1; iter <= num_retries; ++iter) {
        if (iter > 1) {
            for (int i = 0; i < iter * iter; ++i) {
                wait_us(10);
            }
        }
        bool this_okay = true;
        ATOMIC_BLOCK_FORCEON { this_okay = handler(master_matrix, slave_matrix); };
        if (this_okay) return true;
    }
    dprintf("Failed to execute %s\n", prefix);
    return false;
}

#define TRANSACTION_HANDLER_MASTER(prefix)                                                                              \
    do {                                                                                                                \
        if (!transaction_handler_master(master_matrix, slave_matrix, #prefix, &prefix##_handlers_master)) return false; \
    } while (0)

#define TRANSACTION_HANDLER_SLAVE(prefix)                                               \
    do {                                                                                \
        ATOMIC_BLOCK_FORCEON { prefix##_handlers_slave(master_matrix, slave_matrix); }; \
    } while (0)

inline static bool read_if_checksum_mismatch(int8_t trans_id_checksum, int8_t trans_id_retrieve, uint32_t *last_update, void *destination, const void *equiv_shmem, size_t length) {
    uint8_t curr_checksum;
    bool    okay = transport_read(trans_id_checksum, &curr_checksum, sizeof(curr_checksum));
    if (okay && (timer_elapsed32(*last_update) >= FORCED_SYNC_THROTTLE_MS || curr_checksum != crc8(equiv_shmem, length))) {
        okay &= transport_read(trans_id_retrieve, destination, length);
        okay &= curr_checksum == crc8(equiv_shmem, length);
        if (okay) {
            *last_update = timer_read32();
        }
    } else {
        memcpy(destination, equiv_shmem, length);
    }
    return okay;
}

inline static bool send_if_condition(int8_t trans_id, uint32_t *last_update, bool condition, void *source, size_t length) {
    bool okay = true;
    if (timer_elapsed32(*last_update) >= FORCED_SYNC_THROTTLE_MS || condition) {
        okay &= transport_write(trans_id, source, length);
        if (okay) {
            *last_update = timer_read32();
        }
    }
    return okay;
}

inline static bool send_if_data_mismatch(int8_t trans_id, uint32_t *last_update, void *source, const void *equiv_shmem, size_t length) {
    // Just run a memcmp to compare the source and equivalent shmem location
    return send_if_condition(trans_id, last_update, (memcmp(source, equiv_shmem, length) != 0), source, length);
}

////////////////////////////////////////////////////
// Slave matrix

static bool slave_matrix_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
    static uint32_t     last_update                    = 0;
    static matrix_row_t last_matrix[(MATRIX_ROWS) / 2] = {0};  // last successfully-read matrix, so we can replicate if there are checksum errors
    matrix_row_t        temp_matrix[(MATRIX_ROWS) / 2];        // holding area while we test whether or not checksum is correct

    bool okay = read_if_checksum_mismatch(GET_SLAVE_MATRIX_CHECKSUM, GET_SLAVE_MATRIX_DATA, &last_update, temp_matrix, split_shmem->smatrix.matrix, sizeof(split_shmem->smatrix.matrix));
    if (okay) {
        // Checksum matches the received data, save as the last matrix state
        memcpy(last_matrix, temp_matrix, sizeof(temp_matrix));
    }
    // Copy out the last-known-good matrix state to the slave matrix
    memcpy(slave_matrix, last_matrix, sizeof(last_matrix));
    return okay;
}

static void slave_matrix_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
    memcpy(split_shmem->smatrix.matrix, slave_matrix, sizeof(split_shmem->smatrix.matrix));
    split_shmem->smatrix.checksum = crc8(split_shmem->smatrix.matrix, sizeof(split_shmem->smatrix.matrix));
}

// clang-format off
#define TRANSACTIONS_SLAVE_MATRIX_MASTER() TRANSACTION_HANDLER_MASTER(slave_matrix)
#define TRANSACTIONS_SLAVE_MATRIX_SLAVE() TRANSACTION_HANDLER_SLAVE(slave_matrix)
#define TRANSACTIONS_SLAVE_MATRIX_REGISTRATIONS \
    [GET_SLAVE_MATRIX_CHECKSUM] = trans_target2initiator_initializer(smatrix.checksum), \
    [GET_SLAVE_MATRIX_DATA]     = trans_target2initiator_initializer(smatrix.matrix),
// clang-format on

////////////////////////////////////////////////////
// Master matrix

#ifdef SPLIT_TRANSPORT_MIRROR

static bool master_matrix_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
    static uint32_t last_update = 0;
    return send_if_data_mismatch(PUT_MASTER_MATRIX, &last_update, master_matrix, split_shmem->mmatrix.matrix, sizeof(split_shmem->mmatrix.matrix));
}

static void master_matrix_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
    // Always copy to the master matrix
    memcpy(master_matrix, split_shmem->mmatrix.matrix, sizeof(split_shmem->mmatrix.matrix));
}

#    define TRANSACTIONS_MASTER_MATRIX_MASTER()      TRANSACTION_HANDLER_MASTER(master_matrix)
#    define TRANSACTIONS_MASTER_MATRIX_SLAVE()       TRANSACTION_HANDLER_SLAVE(master_matrix)
#    define TRANSACTIONS_MASTER_MATRIX_REGISTRATIONS [PUT_MASTER_MATRIX] = trans_initiator2target_initializer(mmatrix.matrix),

#else  // SPLIT_TRANSPORT_MIRROR

#    define TRANSACTIONS_MASTER_MATRIX_MASTER()
#    define TRANSACTIONS_MASTER_MATRIX_SLAVE()
#    define TRANSACTIONS_MASTER_MATRIX_REGISTRATIONS

#endif  // SPLIT_TRANSPORT_MIRROR

////////////////////////////////////////////////////
// Encoders

#ifdef ENCODER_ENABLE

static bool encoder_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
    static uint32_t last_update = 0;
    uint8_t         temp_state[NUMBER_OF_ENCODERS];

    bool okay = read_if_checksum_mismatch(GET_ENCODERS_CHECKSUM, GET_ENCODERS_DATA, &last_update, temp_state, split_shmem->encoders.state, sizeof(temp_state));
    if (okay) encoder_update_raw(temp_state);
    return okay;
}

static void encoder_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
    uint8_t encoder_state[NUMBER_OF_ENCODERS];
    encoder_state_raw(encoder_state);
    // Always prepare the encoder state for read.
    memcpy(split_shmem->encoders.state, encoder_state, sizeof(encoder_state));
    // Now update the checksum given that the encoders has been written to
    split_shmem->encoders.checksum = crc8(encoder_state, sizeof(encoder_state));
}

// clang-format off
#    define TRANSACTIONS_ENCODERS_MASTER() TRANSACTION_HANDLER_MASTER(encoder)
#    define TRANSACTIONS_ENCODERS_SLAVE() TRANSACTION_HANDLER_SLAVE(encoder)
#    define TRANSACTIONS_ENCODERS_REGISTRATIONS \
    [GET_ENCODERS_CHECKSUM] = trans_target2initiator_initializer(encoders.checksum), \
    [GET_ENCODERS_DATA]     = trans_target2initiator_initializer(encoders.state),
// clang-format on

#else  // ENCODER_ENABLE

#    define TRANSACTIONS_ENCODERS_MASTER()
#    define TRANSACTIONS_ENCODERS_SLAVE()
#    define TRANSACTIONS_ENCODERS_REGISTRATIONS

#endif  // ENCODER_ENABLE

////////////////////////////////////////////////////
// Sync timer

#ifndef DISABLE_SYNC_TIMER

static bool sync_timer_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
    static uint32_t last_update = 0;

    bool okay = true;
    if (timer_elapsed32(last_update) >= FORCED_SYNC_THROTTLE_MS) {
        uint32_t sync_timer = sync_timer_read32() + SYNC_TIMER_OFFSET;
        okay &= transport_write(PUT_SYNC_TIMER, &sync_timer, sizeof(sync_timer));
        if (okay) {
            last_update = timer_read32();
        }
    }
    return okay;
}

static void sync_timer_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
    static uint32_t last_sync_timer = 0;
    if (last_sync_timer != split_shmem->sync_timer) {
        last_sync_timer = split_shmem->sync_timer;
        sync_timer_update(last_sync_timer);
    }
}

#    define TRANSACTIONS_SYNC_TIMER_MASTER()      TRANSACTION_HANDLER_MASTER(sync_timer)
#    define TRANSACTIONS_SYNC_TIMER_SLAVE()       TRANSACTION_HANDLER_SLAVE(sync_timer)
#    define TRANSACTIONS_SYNC_TIMER_REGISTRATIONS [PUT_SYNC_TIMER] = trans_initiator2target_initializer(sync_timer),

#else  // DISABLE_SYNC_TIMER

#    define TRANSACTIONS_SYNC_TIMER_MASTER()
#    define TRANSACTIONS_SYNC_TIMER_SLAVE()
#    define TRANSACTIONS_SYNC_TIMER_REGISTRATIONS

#endif  // DISABLE_SYNC_TIMER

////////////////////////////////////////////////////
// Layer state

#if !defined(NO_ACTION_LAYER) && defined(SPLIT_LAYER_STATE_ENABLE)

static bool layer_state_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
    static uint32_t last_layer_state_update         = 0;
    static uint32_t last_default_layer_state_update = 0;

    bool okay = send_if_condition(PUT_LAYER_STATE, &last_layer_state_update, (layer_state != split_shmem->layers.layer_state), &layer_state, sizeof(layer_state));
    if (okay) {
        okay &= send_if_condition(PUT_DEFAULT_LAYER_STATE, &last_default_layer_state_update, (default_layer_state != split_shmem->layers.default_layer_state), &default_layer_state, sizeof(default_layer_state));
    }
    return okay;
}

static void layer_state_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
    layer_state         = split_shmem->layers.layer_state;
    default_layer_state = split_shmem->layers.default_layer_state;
}

// clang-format off
#    define TRANSACTIONS_LAYER_STATE_MASTER() TRANSACTION_HANDLER_MASTER(layer_state)
#    define TRANSACTIONS_LAYER_STATE_SLAVE() TRANSACTION_HANDLER_SLAVE(layer_state)
#    define TRANSACTIONS_LAYER_STATE_REGISTRATIONS \
    [PUT_LAYER_STATE]         = trans_initiator2target_initializer(layers.layer_state), \
    [PUT_DEFAULT_LAYER_STATE] = trans_initiator2target_initializer(layers.default_layer_state),
// clang-format on

#else  // !defined(NO_ACTION_LAYER) && defined(SPLIT_LAYER_STATE_ENABLE)

#    define TRANSACTIONS_LAYER_STATE_MASTER()
#    define TRANSACTIONS_LAYER_STATE_SLAVE()
#    define TRANSACTIONS_LAYER_STATE_REGISTRATIONS

#endif  // !defined(NO_ACTION_LAYER) && defined(SPLIT_LAYER_STATE_ENABLE)

////////////////////////////////////////////////////
// LED state

#ifdef SPLIT_LED_STATE_ENABLE

static bool led_state_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
    static uint32_t last_update = 0;
    uint8_t         led_state   = host_keyboard_leds();
    return send_if_data_mismatch(PUT_LED_STATE, &last_update, &led_state, &split_shmem->led_state, sizeof(led_state));
}

static void led_state_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
    void set_split_host_keyboard_leds(uint8_t led_state);
    set_split_host_keyboard_leds(split_shmem->led_state);
}

#    define TRANSACTIONS_LED_STATE_MASTER()      TRANSACTION_HANDLER_MASTER(led_state)
#    define TRANSACTIONS_LED_STATE_SLAVE()       TRANSACTION_HANDLER_SLAVE(led_state)
#    define TRANSACTIONS_LED_STATE_REGISTRATIONS [PUT_LED_STATE] = trans_initiator2target_initializer(led_state),

#else  // SPLIT_LED_STATE_ENABLE

#    define TRANSACTIONS_LED_STATE_MASTER()
#    define TRANSACTIONS_LED_STATE_SLAVE()
#    define TRANSACTIONS_LED_STATE_REGISTRATIONS

#endif  // SPLIT_LED_STATE_ENABLE

////////////////////////////////////////////////////
// Mods

#ifdef SPLIT_MODS_ENABLE

static bool mods_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
    static uint32_t   last_update    = 0;
    bool              mods_need_sync = timer_elapsed32(last_update) >= FORCED_SYNC_THROTTLE_MS;
    split_mods_sync_t new_mods;
    new_mods.real_mods = get_mods();
    if (!mods_need_sync && new_mods.real_mods != split_shmem->mods.real_mods) {
        mods_need_sync = true;
    }

    new_mods.weak_mods = get_weak_mods();
    if (!mods_need_sync && new_mods.weak_mods != split_shmem->mods.weak_mods) {
        mods_need_sync = true;
    }

#    ifndef NO_ACTION_ONESHOT
    new_mods.oneshot_mods = get_oneshot_mods();
    if (!mods_need_sync && new_mods.oneshot_mods != split_shmem->mods.oneshot_mods) {
        mods_need_sync = true;
    }
#    endif  // NO_ACTION_ONESHOT

    bool okay = true;
    if (mods_need_sync) {
        okay &= transport_write(PUT_MODS, &new_mods, sizeof(new_mods));
        if (okay) {
            last_update = timer_read32();
        }
    }

    return okay;
}

static void mods_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
    set_mods(split_shmem->mods.real_mods);
    set_weak_mods(split_shmem->mods.weak_mods);
#    ifndef NO_ACTION_ONESHOT
    set_oneshot_mods(split_shmem->mods.oneshot_mods);
#    endif
}

#    define TRANSACTIONS_MODS_MASTER()      TRANSACTION_HANDLER_MASTER(mods)
#    define TRANSACTIONS_MODS_SLAVE()       TRANSACTION_HANDLER_SLAVE(mods)
#    define TRANSACTIONS_MODS_REGISTRATIONS [PUT_MODS] = trans_initiator2target_initializer(mods),

#else  // SPLIT_MODS_ENABLE

#    define TRANSACTIONS_MODS_MASTER()
#    define TRANSACTIONS_MODS_SLAVE()
#    define TRANSACTIONS_MODS_REGISTRATIONS

#endif  // SPLIT_MODS_ENABLE

////////////////////////////////////////////////////
// Backlight

#ifdef BACKLIGHT_ENABLE

static bool backlight_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
    static uint32_t last_update = 0;
    uint8_t         level       = is_backlight_enabled() ? get_backlight_level() : 0;
    return send_if_condition(PUT_BACKLIGHT, &last_update, (level != split_shmem->backlight_level), &level, sizeof(level));
}

static void backlight_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) { backlight_set(split_shmem->backlight_level); }

#    define TRANSACTIONS_BACKLIGHT_MASTER()      TRANSACTION_HANDLER_MASTER(backlight)
#    define TRANSACTIONS_BACKLIGHT_SLAVE()       TRANSACTION_HANDLER_SLAVE(backlight)
#    define TRANSACTIONS_BACKLIGHT_REGISTRATIONS [PUT_BACKLIGHT] = trans_initiator2target_initializer(backlight_level),

#else  // BACKLIGHT_ENABLE

#    define TRANSACTIONS_BACKLIGHT_MASTER()
#    define TRANSACTIONS_BACKLIGHT_SLAVE()
#    define TRANSACTIONS_BACKLIGHT_REGISTRATIONS

#endif  // BACKLIGHT_ENABLE

////////////////////////////////////////////////////
// RGBLIGHT

#if defined(RGBLIGHT_ENABLE) && defined(RGBLIGHT_SPLIT)

static bool rgblight_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
    static uint32_t     last_update = 0;
    rgblight_syncinfo_t rgblight_sync;
    rgblight_get_syncinfo(&rgblight_sync);
    if (send_if_condition(PUT_RGBLIGHT, &last_update, (rgblight_sync.status.change_flags != 0), &rgblight_sync, sizeof(rgblight_sync))) {
        rgblight_clear_change_flags();
    } else {
        return false;
    }
    return true;
}

static void rgblight_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
    // Update the RGB with the new data
    if (split_shmem->rgblight_sync.status.change_flags != 0) {
        rgblight_update_sync(&split_shmem->rgblight_sync, false);
        split_shmem->rgblight_sync.status.change_flags = 0;
    }
}

#    define TRANSACTIONS_RGBLIGHT_MASTER()      TRANSACTION_HANDLER_MASTER(rgblight)
#    define TRANSACTIONS_RGBLIGHT_SLAVE()       TRANSACTION_HANDLER_SLAVE(rgblight)
#    define TRANSACTIONS_RGBLIGHT_REGISTRATIONS [PUT_RGBLIGHT] = trans_initiator2target_initializer(rgblight_sync),

#else  // defined(RGBLIGHT_ENABLE) && defined(RGBLIGHT_SPLIT)

#    define TRANSACTIONS_RGBLIGHT_MASTER()
#    define TRANSACTIONS_RGBLIGHT_SLAVE()
#    define TRANSACTIONS_RGBLIGHT_REGISTRATIONS

#endif  // defined(RGBLIGHT_ENABLE) && defined(RGBLIGHT_SPLIT)

////////////////////////////////////////////////////
// LED Matrix

#if defined(LED_MATRIX_ENABLE) && defined(LED_MATRIX_SPLIT)

static bool led_matrix_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
    static uint32_t   last_update = 0;
    led_matrix_sync_t led_matrix_sync;
    memcpy(&led_matrix_sync.led_matrix, &led_matrix_eeconfig, sizeof(led_eeconfig_t));
    led_matrix_sync.led_suspend_state = led_matrix_get_suspend_state();
    return send_if_data_mismatch(PUT_LED_MATRIX, &last_update, &led_matrix_sync, &split_shmem->led_matrix_sync, sizeof(led_matrix_sync));
}

static void led_matrix_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
    memcpy(&led_matrix_eeconfig, &split_shmem->led_matrix_sync.led_matrix, sizeof(led_eeconfig_t));
    led_matrix_set_suspend_state(split_shmem->led_matrix_sync.led_suspend_state);
}

#    define TRANSACTIONS_LED_MATRIX_MASTER()      TRANSACTION_HANDLER_MASTER(led_matrix)
#    define TRANSACTIONS_LED_MATRIX_SLAVE()       TRANSACTION_HANDLER_SLAVE(led_matrix)
#    define TRANSACTIONS_LED_MATRIX_REGISTRATIONS [PUT_LED_MATRIX] = trans_initiator2target_initializer(led_matrix_sync),

#else  // defined(LED_MATRIX_ENABLE) && defined(LED_MATRIX_SPLIT)

#    define TRANSACTIONS_LED_MATRIX_MASTER()
#    define TRANSACTIONS_LED_MATRIX_SLAVE()
#    define TRANSACTIONS_LED_MATRIX_REGISTRATIONS

#endif  // defined(LED_MATRIX_ENABLE) && defined(LED_MATRIX_SPLIT)

////////////////////////////////////////////////////
// RGB Matrix

#if defined(RGB_MATRIX_ENABLE) && defined(RGB_MATRIX_SPLIT)

static bool rgb_matrix_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
    static uint32_t   last_update = 0;
    rgb_matrix_sync_t rgb_matrix_sync;
    memcpy(&rgb_matrix_sync.rgb_matrix, &rgb_matrix_config, sizeof(rgb_config_t));
    rgb_matrix_sync.rgb_suspend_state = rgb_matrix_get_suspend_state();
    return send_if_data_mismatch(PUT_RGB_MATRIX, &last_update, &rgb_matrix_sync, &split_shmem->rgb_matrix_sync, sizeof(rgb_matrix_sync));
}

static void rgb_matrix_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
    memcpy(&rgb_matrix_config, &split_shmem->rgb_matrix_sync.rgb_matrix, sizeof(rgb_config_t));
    rgb_matrix_set_suspend_state(split_shmem->rgb_matrix_sync.rgb_suspend_state);
}

#    define TRANSACTIONS_RGB_MATRIX_MASTER()      TRANSACTION_HANDLER_MASTER(rgb_matrix)
#    define TRANSACTIONS_RGB_MATRIX_SLAVE()       TRANSACTION_HANDLER_SLAVE(rgb_matrix)
#    define TRANSACTIONS_RGB_MATRIX_REGISTRATIONS [PUT_RGB_MATRIX] = trans_initiator2target_initializer(rgb_matrix_sync),

#else  // defined(RGB_MATRIX_ENABLE) && defined(RGB_MATRIX_SPLIT)

#    define TRANSACTIONS_RGB_MATRIX_MASTER()
#    define TRANSACTIONS_RGB_MATRIX_SLAVE()
#    define TRANSACTIONS_RGB_MATRIX_REGISTRATIONS

#endif  // defined(RGB_MATRIX_ENABLE) && defined(RGB_MATRIX_SPLIT)

////////////////////////////////////////////////////
// WPM

#if defined(WPM_ENABLE) && defined(SPLIT_WPM_ENABLE)

static bool wpm_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
    static uint32_t last_update = 0;
    uint8_t         current_wpm = get_current_wpm();
    return send_if_condition(PUT_WPM, &last_update, (current_wpm != split_shmem->current_wpm), &current_wpm, sizeof(current_wpm));
}

static void wpm_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) { set_current_wpm(split_shmem->current_wpm); }

#    define TRANSACTIONS_WPM_MASTER()      TRANSACTION_HANDLER_MASTER(wpm)
#    define TRANSACTIONS_WPM_SLAVE()       TRANSACTION_HANDLER_SLAVE(wpm)
#    define TRANSACTIONS_WPM_REGISTRATIONS [PUT_WPM] = trans_initiator2target_initializer(current_wpm),

#else  // defined(WPM_ENABLE) && defined(SPLIT_WPM_ENABLE)

#    define TRANSACTIONS_WPM_MASTER()
#    define TRANSACTIONS_WPM_SLAVE()
#    define TRANSACTIONS_WPM_REGISTRATIONS

#endif  // defined(WPM_ENABLE) && defined(SPLIT_WPM_ENABLE)

////////////////////////////////////////////////////
// OLED

#if defined(OLED_DRIVER_ENABLE) && defined(SPLIT_OLED_ENABLE)

static bool oled_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
    static uint32_t last_update        = 0;
    bool            current_oled_state = is_oled_on();
    return send_if_condition(PUT_OLED, &last_update, (current_oled_state != split_shmem->current_oled_state), &current_oled_state, sizeof(current_oled_state));
}

static void oled_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
    if (split_shmem->current_oled_state) {
        oled_on();
    } else {
        oled_off();
    }
}

#    define TRANSACTIONS_OLED_MASTER()      TRANSACTION_HANDLER_MASTER(oled)
#    define TRANSACTIONS_OLED_SLAVE()       TRANSACTION_HANDLER_SLAVE(oled)
#    define TRANSACTIONS_OLED_REGISTRATIONS [PUT_OLED] = trans_initiator2target_initializer(current_oled_state),

#else  // defined(OLED_DRIVER_ENABLE) && defined(SPLIT_OLED_ENABLE)

#    define TRANSACTIONS_OLED_MASTER()
#    define TRANSACTIONS_OLED_SLAVE()
#    define TRANSACTIONS_OLED_REGISTRATIONS

#endif  // defined(OLED_ENABLE) && defined(SPLIT_OLED_ENABLE)

////////////////////////////////////////////////////
// ST7565

#if defined(ST7565_ENABLE) && defined(SPLIT_ST7565_ENABLE)

static bool st7565_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
    static uint32_t last_update          = 0;
    bool            current_st7565_state = st7565_is_on();
    return send_if_condition(PUT_ST7565, &last_update, (current_st7565_state != split_shmem->current_st7565_state), &current_st7565_state, sizeof(current_st7565_state));
}

static void st7565_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
    if (split_shmem->current_st7565_state) {
        st7565_on();
    } else {
        st7565_off();
    }
}

#    define TRANSACTIONS_ST7565_MASTER()      TRANSACTION_HANDLER_MASTER(st7565)
#    define TRANSACTIONS_ST7565_SLAVE()       TRANSACTION_HANDLER_SLAVE(st7565)
#    define TRANSACTIONS_ST7565_REGISTRATIONS [PUT_ST7565] = trans_initiator2target_initializer(current_st7565_state),

#else  // defined(ST7565_ENABLE) && defined(SPLIT_ST7565_ENABLE)

#    define TRANSACTIONS_ST7565_MASTER()
#    define TRANSACTIONS_ST7565_SLAVE()
#    define TRANSACTIONS_ST7565_REGISTRATIONS

#endif  // defined(ST7565_ENABLE) && defined(SPLIT_ST7565_ENABLE)

////////////////////////////////////////////////////

uint8_t                  dummy;
split_transaction_desc_t split_transaction_table[NUM_TOTAL_TRANSACTIONS] = {
    // Set defaults
    [0 ...(NUM_TOTAL_TRANSACTIONS - 1)] = {NULL, 0, 0, 0, 0, 0},

#ifdef USE_I2C
    [I2C_EXECUTE_CALLBACK] = trans_initiator2target_initializer(transaction_id),
#endif  // USE_I2C

    // clang-format off
    TRANSACTIONS_SLAVE_MATRIX_REGISTRATIONS
    TRANSACTIONS_MASTER_MATRIX_REGISTRATIONS
    TRANSACTIONS_ENCODERS_REGISTRATIONS
    TRANSACTIONS_SYNC_TIMER_REGISTRATIONS
    TRANSACTIONS_LAYER_STATE_REGISTRATIONS
    TRANSACTIONS_LED_STATE_REGISTRATIONS
    TRANSACTIONS_MODS_REGISTRATIONS
    TRANSACTIONS_BACKLIGHT_REGISTRATIONS
    TRANSACTIONS_RGBLIGHT_REGISTRATIONS
    TRANSACTIONS_LED_MATRIX_REGISTRATIONS
    TRANSACTIONS_RGB_MATRIX_REGISTRATIONS
    TRANSACTIONS_WPM_REGISTRATIONS
    TRANSACTIONS_OLED_REGISTRATIONS
    TRANSACTIONS_ST7565_REGISTRATIONS
// clang-format on

#if defined(SPLIT_TRANSACTION_IDS_KB) || defined(SPLIT_TRANSACTION_IDS_USER)
        [PUT_RPC_INFO]  = trans_initiator2target_initializer_cb(rpc_info, slave_rpc_info_callback),
    [PUT_RPC_REQ_DATA]  = trans_initiator2target_initializer(rpc_m2s_buffer),
    [EXECUTE_RPC]       = trans_initiator2target_initializer_cb(rpc_info.transaction_id, slave_rpc_exec_callback),
    [GET_RPC_RESP_DATA] = trans_target2initiator_initializer(rpc_s2m_buffer),
#endif  // defined(SPLIT_TRANSACTION_IDS_KB) || defined(SPLIT_TRANSACTION_IDS_USER)
};

bool transactions_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
    TRANSACTIONS_SLAVE_MATRIX_MASTER();
    TRANSACTIONS_MASTER_MATRIX_MASTER();
    TRANSACTIONS_ENCODERS_MASTER();
    TRANSACTIONS_SYNC_TIMER_MASTER();
    TRANSACTIONS_LAYER_STATE_MASTER();
    TRANSACTIONS_LED_STATE_MASTER();
    TRANSACTIONS_MODS_MASTER();
    TRANSACTIONS_BACKLIGHT_MASTER();
    TRANSACTIONS_RGBLIGHT_MASTER();
    TRANSACTIONS_LED_MATRIX_MASTER();
    TRANSACTIONS_RGB_MATRIX_MASTER();
    TRANSACTIONS_WPM_MASTER();
    TRANSACTIONS_OLED_MASTER();
    TRANSACTIONS_ST7565_MASTER();
    return true;
}

void transactions_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
    TRANSACTIONS_SLAVE_MATRIX_SLAVE();
    TRANSACTIONS_MASTER_MATRIX_SLAVE();
    TRANSACTIONS_ENCODERS_SLAVE();
    TRANSACTIONS_SYNC_TIMER_SLAVE();
    TRANSACTIONS_LAYER_STATE_SLAVE();
    TRANSACTIONS_LED_STATE_SLAVE();
    TRANSACTIONS_MODS_SLAVE();
    TRANSACTIONS_BACKLIGHT_SLAVE();
    TRANSACTIONS_RGBLIGHT_SLAVE();
    TRANSACTIONS_LED_MATRIX_SLAVE();
    TRANSACTIONS_RGB_MATRIX_SLAVE();
    TRANSACTIONS_WPM_SLAVE();
    TRANSACTIONS_OLED_SLAVE();
    TRANSACTIONS_ST7565_SLAVE();
}

#if defined(SPLIT_TRANSACTION_IDS_KB) || defined(SPLIT_TRANSACTION_IDS_USER)

void transaction_register_rpc(int8_t transaction_id, slave_callback_t callback) {
    // Prevent invoking RPC on QMK core sync data
    if (transaction_id <= GET_RPC_RESP_DATA) return;

    // Set the callback
    split_transaction_table[transaction_id].slave_callback          = callback;
    split_transaction_table[transaction_id].initiator2target_offset = offsetof(split_shared_memory_t, rpc_m2s_buffer);
    split_transaction_table[transaction_id].target2initiator_offset = offsetof(split_shared_memory_t, rpc_s2m_buffer);
}

bool transaction_rpc_exec(int8_t transaction_id, uint8_t initiator2target_buffer_size, const void *initiator2target_buffer, uint8_t target2initiator_buffer_size, void *target2initiator_buffer) {
    // Prevent transaction attempts while transport is disconnected
    if (!is_transport_connected()) {
        return false;
    }
    // Prevent invoking RPC on QMK core sync data
    if (transaction_id <= GET_RPC_RESP_DATA) return false;
    // Prevent sizing issues
    if (initiator2target_buffer_size > RPC_M2S_BUFFER_SIZE) return false;
    if (target2initiator_buffer_size > RPC_S2M_BUFFER_SIZE) return false;

    // Prepare the metadata block
    rpc_sync_info_t info = {.transaction_id = transaction_id, .m2s_length = initiator2target_buffer_size, .s2m_length = target2initiator_buffer_size};

    // Make sure the local side knows that we're not sending the full block of data
    split_transaction_table[PUT_RPC_REQ_DATA].initiator2target_buffer_size  = initiator2target_buffer_size;
    split_transaction_table[GET_RPC_RESP_DATA].target2initiator_buffer_size = target2initiator_buffer_size;

    // Run through the sequence:
    // * set the transaction ID and lengths
    // * send the request data
    // * execute RPC callback
    // * retrieve the response data
    if (!transport_write(PUT_RPC_INFO, &info, sizeof(info))) {
        return false;
    }
    if (!transport_write(PUT_RPC_REQ_DATA, initiator2target_buffer, initiator2target_buffer_size)) {
        return false;
    }
    if (!transport_write(EXECUTE_RPC, &transaction_id, sizeof(transaction_id))) {
        return false;
    }
    if (!transport_read(GET_RPC_RESP_DATA, target2initiator_buffer, target2initiator_buffer_size)) {
        return false;
    }
    return true;
}

void slave_rpc_info_callback(uint8_t initiator2target_buffer_size, const void *initiator2target_buffer, uint8_t target2initiator_buffer_size, void *target2initiator_buffer) {
    // The RPC info block contains the intended transaction ID, as well as the sizes for both inbound and outbound data.
    // Ignore the args -- the `split_shmem` already has the info, we just need to act upon it.
    // We must keep the `split_transaction_table` non-const, so that it is able to be modified at runtime.

    split_transaction_table[PUT_RPC_REQ_DATA].initiator2target_buffer_size  = split_shmem->rpc_info.m2s_length;
    split_transaction_table[GET_RPC_RESP_DATA].target2initiator_buffer_size = split_shmem->rpc_info.s2m_length;
}

void slave_rpc_exec_callback(uint8_t initiator2target_buffer_size, const void *initiator2target_buffer, uint8_t target2initiator_buffer_size, void *target2initiator_buffer) {
    // We can assume that the buffer lengths are correctly set, now, given that sequentially the rpc_info callback was already executed.
    // Go through the rpc_info and execute _that_ transaction's callback, with the scratch buffers as inputs.
    int8_t transaction_id = split_shmem->rpc_info.transaction_id;
    if (transaction_id < NUM_TOTAL_TRANSACTIONS) {
        split_transaction_desc_t *trans = &split_transaction_table[transaction_id];
        if (trans->slave_callback) {
            trans->slave_callback(split_shmem->rpc_info.m2s_length, split_shmem->rpc_m2s_buffer, split_shmem->rpc_info.s2m_length, split_shmem->rpc_s2m_buffer);
        }
    }
}

#endif  // defined(SPLIT_TRANSACTION_IDS_KB) || defined(SPLIT_TRANSACTION_IDS_USER)