blob: 6e9f92727fa701b4c56cf0276fee52e6b48fa874 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
|
/*
Copyright 2012 Jun Wako
Copyright 2014 Jack Humbert
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdint.h>
#include <stdbool.h>
#include <avr/io.h>
#include "wait.h"
#include "print.h"
#include "debug.h"
#include "util.h"
#include "matrix.h"
#ifdef MATRIX_HAS_GHOST
# error "The universal matrix.c file cannot be used for this keyboard."
#endif
#ifndef DEBOUNCING_DELAY
# define DEBOUNCING_DELAY 5
#endif
static const uint8_t row_pins[MATRIX_ROWS] = MATRIX_ROW_PINS;
static const uint8_t col_pins[MATRIX_COLS] = MATRIX_COL_PINS;
/* matrix state */
#if DIODE_DIRECTION == COL2ROW
static matrix_row_t matrix[MATRIX_ROWS];
#else
static matrix_col_t matrix[MATRIX_COLS];
#endif
static int8_t debouncing_delay = -1;
#if DIODE_DIRECTION == COL2ROW
static void toggle_row(uint8_t row);
static matrix_row_t read_cols(void);
#else
static void toggle_col(uint8_t col);
static matrix_col_t read_rows(void);
#endif
__attribute__ ((weak))
void matrix_init_quantum(void) {
matrix_init_kb();
}
__attribute__ ((weak))
void matrix_scan_quantum(void) {
matrix_scan_kb();
}
__attribute__ ((weak))
void matrix_init_kb(void) {
matrix_init_user();
}
__attribute__ ((weak))
void matrix_scan_kb(void) {
matrix_scan_user();
}
__attribute__ ((weak))
void matrix_init_user(void) {
}
__attribute__ ((weak))
void matrix_scan_user(void) {
}
uint8_t matrix_rows(void) {
return MATRIX_ROWS;
}
uint8_t matrix_cols(void) {
return MATRIX_COLS;
}
void matrix_power_up(void) {
#if DIODE_DIRECTION == COL2ROW
for (int8_t r = MATRIX_ROWS - 1; r >= 0; --r) {
/* DDRxn */
_SFR_IO8((row_pins[r] >> 4) + 1) |= _BV(row_pins[r] & 0xF);
toggle_row(r);
}
for (int8_t c = MATRIX_COLS - 1; c >= 0; --c) {
/* PORTxn */
_SFR_IO8((col_pins[c] >> 4) + 2) |= _BV(col_pins[c] & 0xF);
}
#else
for (int8_t c = MATRIX_COLS - 1; c >= 0; --c) {
/* DDRxn */
_SFR_IO8((col_pins[c] >> 4) + 1) |= _BV(col_pins[c] & 0xF);
toggle_col(c);
}
for (int8_t r = MATRIX_ROWS - 1; r >= 0; --r) {
/* PORTxn */
_SFR_IO8((row_pins[r] >> 4) + 2) |= _BV(row_pins[r] & 0xF);
}
#endif
}
void matrix_init(void) {
/* frees PORTF by setting the JTD bit twice within four cycles */
#ifdef __AVR_ATmega32U4__
MCUCR |= _BV(JTD);
MCUCR |= _BV(JTD);
#endif
/* initializes the I/O pins */
#if DIODE_DIRECTION == COL2ROW
for (int8_t r = MATRIX_ROWS - 1; r >= 0; --r) {
/* DDRxn */
_SFR_IO8((row_pins[r] >> 4) + 1) |= _BV(row_pins[r] & 0xF);
toggle_row(r);
}
for (int8_t c = MATRIX_COLS - 1; c >= 0; --c) {
/* PORTxn */
_SFR_IO8((col_pins[c] >> 4) + 2) |= _BV(col_pins[c] & 0xF);
}
#else
for (int8_t c = MATRIX_COLS - 1; c >= 0; --c) {
/* DDRxn */
_SFR_IO8((col_pins[c] >> 4) + 1) |= _BV(col_pins[c] & 0xF);
toggle_col(c);
}
for (int8_t r = MATRIX_ROWS - 1; r >= 0; --r) {
/* PORTxn */
_SFR_IO8((row_pins[r] >> 4) + 2) |= _BV(row_pins[r] & 0xF);
}
#endif
matrix_init_quantum();
}
#if DIODE_DIRECTION == COL2ROW
uint8_t matrix_scan(void) {
static matrix_row_t debouncing_matrix[MATRIX_ROWS];
for (int8_t r = MATRIX_ROWS - 1; r >= 0; --r) {
toggle_row(r);
matrix_row_t state = read_cols();
if (debouncing_matrix[r] != state) {
debouncing_matrix[r] = state;
debouncing_delay = DEBOUNCING_DELAY;
}
toggle_row(r);
}
if (debouncing_delay >= 0) {
dprintf("Debouncing delay remaining: %X\n", debouncing_delay);
--debouncing_delay;
if (debouncing_delay >= 0) {
wait_ms(1);
}
else {
for (int8_t r = MATRIX_ROWS - 1; r >= 0; --r) {
matrix[r] = debouncing_matrix[r];
}
}
}
matrix_scan_quantum();
return 1;
}
static void toggle_row(uint8_t row) {
/* PINxn */
_SFR_IO8((row_pins[row] >> 4)) = _BV(row_pins[row] & 0xF);
}
static matrix_row_t read_cols(void) {
matrix_row_t state = 0;
for (int8_t c = MATRIX_COLS - 1; c >= 0; --c) {
/* PINxn */
if (!(_SFR_IO8((col_pins[c] >> 4)) & _BV(col_pins[c] & 0xF))) {
state |= (matrix_row_t)1 << c;
}
}
return state;
}
matrix_row_t matrix_get_row(uint8_t row) {
return matrix[row];
}
#else
uint8_t matrix_scan(void) {
static matrix_col_t debouncing_matrix[MATRIX_COLS];
for (int8_t c = MATRIX_COLS - 1; c >= 0; --c) {
toggle_col(c);
matrix_col_t state = read_rows();
if (debouncing_matrix[c] != state) {
debouncing_matrix[c] = state;
debouncing_delay = DEBOUNCING_DELAY;
}
toggle_col(c);
}
if (debouncing_delay >= 0) {
dprintf("Debouncing delay remaining: %X\n", debouncing_delay);
--debouncing_delay;
if (debouncing_delay >= 0) {
wait_ms(1);
}
else {
for (int8_t c = MATRIX_COLS - 1; c >= 0; --c) {
matrix[c] = debouncing_matrix[c];
}
}
}
matrix_scan_quantum();
return 1;
}
static void toggle_col(uint8_t col) {
/* PINxn */
_SFR_IO8((col_pins[col] >> 4)) = _BV(col_pins[col] & 0xF);
}
static matrix_col_t read_rows(void) {
matrix_col_t state = 0;
for (int8_t r = MATRIX_ROWS - 1; r >= 0; --r) {
/* PINxn */
if (!(_SFR_IO8((row_pins[r] >> 4)) & _BV(row_pins[r] & 0xF))) {
state |= (matrix_col_t)1 << r;
}
}
return state;
}
matrix_row_t matrix_get_row(uint8_t row) {
matrix_row_t state = 0;
matrix_col_t mask = (matrix_col_t)1 << row;
for (int8_t c = MATRIX_COLS - 1; c >= 0; --c) {
if (matrix[c] & mask) {
state |= (matrix_row_t)1 << c;
}
}
return state;
}
#endif
bool matrix_is_modified(void) {
if (debouncing_delay >= 0) return false;
return true;
}
bool matrix_is_on(uint8_t row, uint8_t col) {
return matrix_get_row(row) & (matrix_row_t)1 << col;
}
void matrix_print(void) {
dprintln("Human-readable matrix state:");
for (uint8_t r = 0; r < MATRIX_ROWS; r++) {
dprintf("State of row %X: %016b\n", r, bitrev16(matrix_get_row(r)));
}
}
uint8_t matrix_key_count(void) {
uint8_t count = 0;
for (int8_t r = MATRIX_ROWS - 1; r >= 0; --r) {
count += bitpop16(matrix_get_row(r));
}
return count;
}
|