summaryrefslogtreecommitdiffstats
path: root/quantum/audio/audio_chibios.c
blob: dddb8f135782699aaa9663f8b67e7f7fede4b51e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
/* Copyright 2016 Jack Humbert
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include "audio.h"
#include <ch.h>
#include <hal.h>

#include <string.h>
#include "print.h"
#include "keymap.h"

#include "eeconfig.h"

// -----------------------------------------------------------------------------

int   voices        = 0;
int   voice_place   = 0;
float frequency     = 0;
float frequency_alt = 0;
int   volume        = 0;
long  position      = 0;

float frequencies[8] = {0, 0, 0, 0, 0, 0, 0, 0};
int   volumes[8]     = {0, 0, 0, 0, 0, 0, 0, 0};
bool  sliding        = false;

float place = 0;

uint8_t *sample;
uint16_t sample_length = 0;

bool     playing_notes  = false;
bool     playing_note   = false;
float    note_frequency = 0;
float    note_length    = 0;
uint8_t  note_tempo     = TEMPO_DEFAULT;
float    note_timbre    = TIMBRE_DEFAULT;
uint16_t note_position  = 0;
float (*notes_pointer)[][2];
uint16_t notes_count;
bool     notes_repeat;
bool     note_resting = false;

uint16_t current_note = 0;
uint8_t  rest_counter = 0;

#ifdef VIBRATO_ENABLE
float vibrato_counter  = 0;
float vibrato_strength = .5;
float vibrato_rate     = 0.125;
#endif

float polyphony_rate = 0;

static bool audio_initialized = false;

audio_config_t audio_config;

uint16_t envelope_index = 0;
bool     glissando      = true;

#ifndef STARTUP_SONG
#    define STARTUP_SONG SONG(STARTUP_SOUND)
#endif
float startup_song[][2] = STARTUP_SONG;

static void gpt_cb8(GPTDriver *gptp);

#define DAC_BUFFER_SIZE 100
#ifndef DAC_SAMPLE_MAX
#    define DAC_SAMPLE_MAX 65535U
#endif

#define START_CHANNEL_1()        \
    gptStart(&GPTD6, &gpt6cfg1); \
    gptStartContinuous(&GPTD6, 2U); \
    palSetPadMode(GPIOA, 4, PAL_MODE_INPUT_ANALOG)
#define START_CHANNEL_2()        \
    gptStart(&GPTD7, &gpt7cfg1); \
    gptStartContinuous(&GPTD7, 2U); \
    palSetPadMode(GPIOA, 5, PAL_MODE_INPUT_ANALOG)
#define STOP_CHANNEL_1()          \
    gptStopTimer(&GPTD6);         \
    palSetPadMode(GPIOA, 4, PAL_MODE_OUTPUT_PUSHPULL); \
    palSetPad(GPIOA, 4)
#define STOP_CHANNEL_2()         \
    gptStopTimer(&GPTD7);        \
    palSetPadMode(GPIOA, 5, PAL_MODE_OUTPUT_PUSHPULL); \
    palSetPad(GPIOA, 5)
    #define RESTART_CHANNEL_1() \
    STOP_CHANNEL_1();       \
    START_CHANNEL_1()
#define RESTART_CHANNEL_2() \
    STOP_CHANNEL_2();       \
    START_CHANNEL_2()
#define UPDATE_CHANNEL_1_FREQ(freq)              \
    gpt6cfg1.frequency = freq * DAC_BUFFER_SIZE; \
    RESTART_CHANNEL_1()
#define UPDATE_CHANNEL_2_FREQ(freq)              \
    gpt7cfg1.frequency = freq * DAC_BUFFER_SIZE; \
    RESTART_CHANNEL_2()
#define GET_CHANNEL_1_FREQ (uint16_t)(gpt6cfg1.frequency * DAC_BUFFER_SIZE)
#define GET_CHANNEL_2_FREQ (uint16_t)(gpt7cfg1.frequency * DAC_BUFFER_SIZE)

/*
 * GPT6 configuration.
 */
// static const GPTConfig gpt6cfg1 = {
//   .frequency    = 1000000U,
//   .callback     = NULL,
//   .cr2          = TIM_CR2_MMS_1,    /* MMS = 010 = TRGO on Update Event.    */
//   .dier         = 0U
// };

GPTConfig gpt6cfg1 = {.frequency = 440U * DAC_BUFFER_SIZE,
                      .callback  = NULL,
                      .cr2       = TIM_CR2_MMS_1, /* MMS = 010 = TRGO on Update Event.    */
                      .dier      = 0U};

GPTConfig gpt7cfg1 = {.frequency = 440U * DAC_BUFFER_SIZE,
                      .callback  = NULL,
                      .cr2       = TIM_CR2_MMS_1, /* MMS = 010 = TRGO on Update Event.    */
                      .dier      = 0U};

GPTConfig gpt8cfg1 = {.frequency = 10,
                      .callback  = gpt_cb8,
                      .cr2       = TIM_CR2_MMS_1, /* MMS = 010 = TRGO on Update Event.    */
                      .dier      = 0U};

/*
 * DAC test buffer (sine wave).
 */
// static const dacsample_t dac_buffer[DAC_BUFFER_SIZE] = {
//   2047, 2082, 2118, 2154, 2189, 2225, 2260, 2296, 2331, 2367, 2402, 2437,
//   2472, 2507, 2542, 2576, 2611, 2645, 2679, 2713, 2747, 2780, 2813, 2846,
//   2879, 2912, 2944, 2976, 3008, 3039, 3070, 3101, 3131, 3161, 3191, 3221,
//   3250, 3278, 3307, 3335, 3362, 3389, 3416, 3443, 3468, 3494, 3519, 3544,
//   3568, 3591, 3615, 3637, 3660, 3681, 3703, 3723, 3744, 3763, 3782, 3801,
//   3819, 3837, 3854, 3870, 3886, 3902, 3917, 3931, 3944, 3958, 3970, 3982,
//   3993, 4004, 4014, 4024, 4033, 4041, 4049, 4056, 4062, 4068, 4074, 4078,
//   4082, 4086, 4089, 4091, 4092, 4093, 4094, 4093, 4092, 4091, 4089, 4086,
//   4082, 4078, 4074, 4068, 4062, 4056, 4049, 4041, 4033, 4024, 4014, 4004,
//   3993, 3982, 3970, 3958, 3944, 3931, 3917, 3902, 3886, 3870, 3854, 3837,
//   3819, 3801, 3782, 3763, 3744, 3723, 3703, 3681, 3660, 3637, 3615, 3591,
//   3568, 3544, 3519, 3494, 3468, 3443, 3416, 3389, 3362, 3335, 3307, 3278,
//   3250, 3221, 3191, 3161, 3131, 3101, 3070, 3039, 3008, 2976, 2944, 2912,
//   2879, 2846, 2813, 2780, 2747, 2713, 2679, 2645, 2611, 2576, 2542, 2507,
//   2472, 2437, 2402, 2367, 2331, 2296, 2260, 2225, 2189, 2154, 2118, 2082,
//   2047, 2012, 1976, 1940, 1905, 1869, 1834, 1798, 1763, 1727, 1692, 1657,
//   1622, 1587, 1552, 1518, 1483, 1449, 1415, 1381, 1347, 1314, 1281, 1248,
//   1215, 1182, 1150, 1118, 1086, 1055, 1024,  993,  963,  933,  903,  873,
//    844,  816,  787,  759,  732,  705,  678,  651,  626,  600,  575,  550,
//    526,  503,  479,  457,  434,  413,  391,  371,  350,  331,  312,  293,
//    275,  257,  240,  224,  208,  192,  177,  163,  150,  136,  124,  112,
//    101,   90,   80,   70,   61,   53,   45,   38,   32,   26,   20,   16,
//     12,    8,    5,    3,    2,    1,    0,    1,    2,    3,    5,    8,
//     12,   16,   20,   26,   32,   38,   45,   53,   61,   70,   80,   90,
//    101,  112,  124,  136,  150,  163,  177,  192,  208,  224,  240,  257,
//    275,  293,  312,  331,  350,  371,  391,  413,  434,  457,  479,  503,
//    526,  550,  575,  600,  626,  651,  678,  705,  732,  759,  787,  816,
//    844,  873,  903,  933,  963,  993, 1024, 1055, 1086, 1118, 1150, 1182,
//   1215, 1248, 1281, 1314, 1347, 1381, 1415, 1449, 1483, 1518, 1552, 1587,
//   1622, 1657, 1692, 1727, 1763, 1798, 1834, 1869, 1905, 1940, 1976, 2012
// };

// static const dacsample_t dac_buffer_2[DAC_BUFFER_SIZE] = {
//     12,    8,    5,    3,    2,    1,    0,    1,    2,    3,    5,    8,
//     12,   16,   20,   26,   32,   38,   45,   53,   61,   70,   80,   90,
//    101,  112,  124,  136,  150,  163,  177,  192,  208,  224,  240,  257,
//    275,  293,  312,  331,  350,  371,  391,  413,  434,  457,  479,  503,
//    526,  550,  575,  600,  626,  651,  678,  705,  732,  759,  787,  816,
//    844,  873,  903,  933,  963,  993, 1024, 1055, 1086, 1118, 1150, 1182,
//   1215, 1248, 1281, 1314, 1347, 1381, 1415, 1449, 1483, 1518, 1552, 1587,
//   1622, 1657, 1692, 1727, 1763, 1798, 1834, 1869, 1905, 1940, 1976, 2012,
//   2047, 2082, 2118, 2154, 2189, 2225, 2260, 2296, 2331, 2367, 2402, 2437,
//   2472, 2507, 2542, 2576, 2611, 2645, 2679, 2713, 2747, 2780, 2813, 2846,
//   2879, 2912, 2944, 2976, 3008, 3039, 3070, 3101, 3131, 3161, 3191, 3221,
//   3250, 3278, 3307, 3335, 3362, 3389, 3416, 3443, 3468, 3494, 3519, 3544,
//   3568, 3591, 3615, 3637, 3660, 3681, 3703, 3723, 3744, 3763, 3782, 3801,
//   3819, 3837, 3854, 3870, 3886, 3902, 3917, 3931, 3944, 3958, 3970, 3982,
//   3993, 4004, 4014, 4024, 4033, 4041, 4049, 4056, 4062, 4068, 4074, 4078,
//   4082, 4086, 4089, 4091, 4092, 4093, 4094, 4093, 4092, 4091, 4089, 4086,
//   4082, 4078, 4074, 4068, 4062, 4056, 4049, 4041, 4033, 4024, 4014, 4004,
//   3993, 3982, 3970, 3958, 3944, 3931, 3917, 3902, 3886, 3870, 3854, 3837,
//   3819, 3801, 3782, 3763, 3744, 3723, 3703, 3681, 3660, 3637, 3615, 3591,
//   3568, 3544, 3519, 3494, 3468, 3443, 3416, 3389, 3362, 3335, 3307, 3278,
//   3250, 3221, 3191, 3161, 3131, 3101, 3070, 3039, 3008, 2976, 2944, 2912,
//   2879, 2846, 2813, 2780, 2747, 2713, 2679, 2645, 2611, 2576, 2542, 2507,
//   2472, 2437, 2402, 2367, 2331, 2296, 2260, 2225, 2189, 2154, 2118, 2082,
//   2047, 2012, 1976, 1940, 1905, 1869, 1834, 1798, 1763, 1727, 1692, 1657,
//   1622, 1587, 1552, 1518, 1483, 1449, 1415, 1381, 1347, 1314, 1281, 1248,
//   1215, 1182, 1150, 1118, 1086, 1055, 1024,  993,  963,  933,  903,  873,
//    844,  816,  787,  759,  732,  705,  678,  651,  626,  600,  575,  550,
//    526,  503,  479,  457,  434,  413,  391,  371,  350,  331,  312,  293,
//    275,  257,  240,  224,  208,  192,  177,  163,  150,  136,  124,  112,
//    101,   90,   80,   70,   61,   53,   45,   38,   32,   26,   20,   16
// };

// squarewave
static const dacsample_t dac_buffer[DAC_BUFFER_SIZE] = {
    // First half is max, second half is 0
    [0 ... DAC_BUFFER_SIZE / 2 - 1]               = DAC_SAMPLE_MAX,
    [DAC_BUFFER_SIZE / 2 ... DAC_BUFFER_SIZE - 1] = 0,
};

// squarewave
static const dacsample_t dac_buffer_2[DAC_BUFFER_SIZE] = {
    // opposite of dac_buffer above
    [0 ... DAC_BUFFER_SIZE / 2 - 1]               = 0,
    [DAC_BUFFER_SIZE / 2 ... DAC_BUFFER_SIZE - 1] = DAC_SAMPLE_MAX,
};

/*
 * DAC streaming callback.
 */
size_t      nz = 0;
static void end_cb1(DACDriver *dacp) {
    (void)dacp;

    nz++;
    if ((nz % 1000) == 0) {
        // palTogglePad(GPIOD, GPIOD_LED3);
    }
}

/*
 * DAC error callback.
 */
static void error_cb1(DACDriver *dacp, dacerror_t err) {
    (void)dacp;
    (void)err;

    chSysHalt("DAC failure");
}

static const DACConfig dac1cfg1 = {.init = DAC_SAMPLE_MAX, .datamode = DAC_DHRM_12BIT_RIGHT};

static const DACConversionGroup dacgrpcfg1 = {.num_channels = 1U, .end_cb = end_cb1, .error_cb = error_cb1, .trigger = DAC_TRG(0)};

static const DACConfig dac1cfg2 = {.init = DAC_SAMPLE_MAX, .datamode = DAC_DHRM_12BIT_RIGHT};

static const DACConversionGroup dacgrpcfg2 = {.num_channels = 1U, .end_cb = end_cb1, .error_cb = error_cb1, .trigger = DAC_TRG(0)};

void audio_init() {
    if (audio_initialized) {
        return;
    }

// Check EEPROM
#ifdef EEPROM_ENABLE
    if (!eeconfig_is_enabled()) {
        eeconfig_init();
    }
    audio_config.raw = eeconfig_read_audio();
#else  // ARM EEPROM
    audio_config.enable        = true;
#    ifdef AUDIO_CLICKY_ON
    audio_config.clicky_enable = true;
#    endif
#endif  // ARM EEPROM

    /*
     * Starting DAC1 driver, setting up the output pin as analog as suggested
     * by the Reference Manual.
     */
    palSetPadMode(GPIOA, 4, PAL_MODE_INPUT_ANALOG);
    palSetPadMode(GPIOA, 5, PAL_MODE_INPUT_ANALOG);
    dacStart(&DACD1, &dac1cfg1);
    dacStart(&DACD2, &dac1cfg2);

    /*
     * Start the note timer
     */
    gptStart(&GPTD8, &gpt8cfg1);
    gptStartContinuous(&GPTD8, 2U);

    /*
     * Starting GPT6/7 driver, it is used for triggering the DAC.
     */
    START_CHANNEL_1();
    START_CHANNEL_2();

    /*
     * Starting a continuous conversion.
     */
    dacStartConversion(&DACD1, &dacgrpcfg1, (dacsample_t *)dac_buffer, DAC_BUFFER_SIZE);
    dacStartConversion(&DACD2, &dacgrpcfg2, (dacsample_t *)dac_buffer_2, DAC_BUFFER_SIZE);

    audio_initialized = true;

    stop_all_notes();
}

void audio_startup() {
    if (audio_config.enable) {
        PLAY_SONG(startup_song);
    }
}

void stop_all_notes() {
    dprintf("audio stop all notes");

    if (!audio_initialized) {
        audio_init();
    }
    voices = 0;

    gptStopTimer(&GPTD6);
    gptStopTimer(&GPTD7);
    gptStopTimer(&GPTD8);

    playing_notes = false;
    playing_note  = false;
    frequency     = 0;
    frequency_alt = 0;
    volume        = 0;

    for (uint8_t i = 0; i < 8; i++) {
        frequencies[i] = 0;
        volumes[i]     = 0;
    }
}

void stop_note(float freq) {
    dprintf("audio stop note freq=%d", (int)freq);

    if (playing_note) {
        if (!audio_initialized) {
            audio_init();
        }
        for (int i = 7; i >= 0; i--) {
            if (frequencies[i] == freq) {
                frequencies[i] = 0;
                volumes[i]     = 0;
                for (int j = i; (j < 7); j++) {
                    frequencies[j]     = frequencies[j + 1];
                    frequencies[j + 1] = 0;
                    volumes[j]         = volumes[j + 1];
                    volumes[j + 1]     = 0;
                }
                break;
            }
        }
        voices--;
        if (voices < 0) {
            voices = 0;
        }
        if (voice_place >= voices) {
            voice_place = 0;
        }
        if (voices == 0) {
            STOP_CHANNEL_1();
            STOP_CHANNEL_2();
            gptStopTimer(&GPTD8);
            frequency     = 0;
            frequency_alt = 0;
            volume        = 0;
            playing_note  = false;
        }
    }
}

#ifdef VIBRATO_ENABLE

float mod(float a, int b) {
    float r = fmod(a, b);
    return r < 0 ? r + b : r;
}

float vibrato(float average_freq) {
#    ifdef VIBRATO_STRENGTH_ENABLE
    float vibrated_freq = average_freq * pow(vibrato_lut[(int)vibrato_counter], vibrato_strength);
#    else
    float vibrated_freq = average_freq * vibrato_lut[(int)vibrato_counter];
#    endif
    vibrato_counter = mod((vibrato_counter + vibrato_rate * (1.0 + 440.0 / average_freq)), VIBRATO_LUT_LENGTH);
    return vibrated_freq;
}

#endif

static void gpt_cb8(GPTDriver *gptp) {
    float freq;

    if (playing_note) {
        if (voices > 0) {
            float freq_alt = 0;
            if (voices > 1) {
                if (polyphony_rate == 0) {
                    if (glissando) {
                        if (frequency_alt != 0 && frequency_alt < frequencies[voices - 2] && frequency_alt < frequencies[voices - 2] * pow(2, -440 / frequencies[voices - 2] / 12 / 2)) {
                            frequency_alt = frequency_alt * pow(2, 440 / frequency_alt / 12 / 2);
                        } else if (frequency_alt != 0 && frequency_alt > frequencies[voices - 2] && frequency_alt > frequencies[voices - 2] * pow(2, 440 / frequencies[voices - 2] / 12 / 2)) {
                            frequency_alt = frequency_alt * pow(2, -440 / frequency_alt / 12 / 2);
                        } else {
                            frequency_alt = frequencies[voices - 2];
                        }
                    } else {
                        frequency_alt = frequencies[voices - 2];
                    }

#ifdef VIBRATO_ENABLE
                    if (vibrato_strength > 0) {
                        freq_alt = vibrato(frequency_alt);
                    } else {
                        freq_alt = frequency_alt;
                    }
#else
                    freq_alt = frequency_alt;
#endif
                }

                if (envelope_index < 65535) {
                    envelope_index++;
                }

                freq_alt = voice_envelope(freq_alt);

                if (freq_alt < 30.517578125) {
                    freq_alt = 30.52;
                }

                if (GET_CHANNEL_2_FREQ != (uint16_t)freq_alt) {
                    UPDATE_CHANNEL_2_FREQ(freq_alt);
                } else {
                    RESTART_CHANNEL_2();
                }
                // note_timbre;
            }

            if (polyphony_rate > 0) {
                if (voices > 1) {
                    voice_place %= voices;
                    if (place++ > (frequencies[voice_place] / polyphony_rate)) {
                        voice_place = (voice_place + 1) % voices;
                        place       = 0.0;
                    }
                }

#ifdef VIBRATO_ENABLE
                if (vibrato_strength > 0) {
                    freq = vibrato(frequencies[voice_place]);
                } else {
                    freq = frequencies[voice_place];
                }
#else
                freq = frequencies[voice_place];
#endif
            } else {
                if (glissando) {
                    if (frequency != 0 && frequency < frequencies[voices - 1] && frequency < frequencies[voices - 1] * pow(2, -440 / frequencies[voices - 1] / 12 / 2)) {
                        frequency = frequency * pow(2, 440 / frequency / 12 / 2);
                    } else if (frequency != 0 && frequency > frequencies[voices - 1] && frequency > frequencies[voices - 1] * pow(2, 440 / frequencies[voices - 1] / 12 / 2)) {
                        frequency = frequency * pow(2, -440 / frequency / 12 / 2);
                    } else {
                        frequency = frequencies[voices - 1];
                    }
                } else {
                    frequency = frequencies[voices - 1];
                }

#ifdef VIBRATO_ENABLE
                if (vibrato_strength > 0) {
                    freq = vibrato(frequency);
                } else {
                    freq = frequency;
                }
#else
                freq = frequency;
#endif
            }

            if (envelope_index < 65535) {
                envelope_index++;
            }

            freq = voice_envelope(freq);

            if (freq < 30.517578125) {
                freq = 30.52;
            }

            if (GET_CHANNEL_1_FREQ != (uint16_t)freq) {
                UPDATE_CHANNEL_1_FREQ(freq);
            } else {
                RESTART_CHANNEL_1();
            }
            // note_timbre;
        }
    }

    if (playing_notes) {
        if (note_frequency > 0) {
#ifdef VIBRATO_ENABLE
            if (vibrato_strength > 0) {
                freq = vibrato(note_frequency);
            } else {
                freq = note_frequency;
            }
#else
            freq = note_frequency;
#endif

            if (envelope_index < 65535) {
                envelope_index++;
            }
            freq = voice_envelope(freq);

            if (GET_CHANNEL_1_FREQ != (uint16_t)freq) {
                UPDATE_CHANNEL_1_FREQ(freq);
                UPDATE_CHANNEL_2_FREQ(freq);
            }
            // note_timbre;
        } else {
            // gptStopTimer(&GPTD6);
            // gptStopTimer(&GPTD7);
        }

        note_position++;
        bool end_of_note = false;
        if (GET_CHANNEL_1_FREQ > 0) {
            if (!note_resting)
                end_of_note = (note_position >= (note_length * 8 - 1));
            else
                end_of_note = (note_position >= (note_length * 8));
        } else {
            end_of_note = (note_position >= (note_length * 8));
        }

        if (end_of_note) {
            current_note++;
            if (current_note >= notes_count) {
                if (notes_repeat) {
                    current_note = 0;
                } else {
                    STOP_CHANNEL_1();
                    STOP_CHANNEL_2();
                    // gptStopTimer(&GPTD8);
                    playing_notes = false;
                    return;
                }
            }
            if (!note_resting) {
                note_resting = true;
                current_note--;
                if ((*notes_pointer)[current_note][0] == (*notes_pointer)[current_note + 1][0]) {
                    note_frequency = 0;
                    note_length    = 1;
                } else {
                    note_frequency = (*notes_pointer)[current_note][0];
                    note_length    = 1;
                }
            } else {
                note_resting   = false;
                envelope_index = 0;
                note_frequency = (*notes_pointer)[current_note][0];
                note_length    = ((*notes_pointer)[current_note][1] / 4) * (((float)note_tempo) / 100);
            }

            note_position = 0;
        }
    }

    if (!audio_config.enable) {
        playing_notes = false;
        playing_note  = false;
    }
}

void play_note(float freq, int vol) {
    dprintf("audio play note freq=%d vol=%d", (int)freq, vol);

    if (!audio_initialized) {
        audio_init();
    }

    if (audio_config.enable && voices < 8) {
        // Cancel notes if notes are playing
        if (playing_notes) {
            stop_all_notes();
        }

        playing_note = true;

        envelope_index = 0;

        if (freq > 0) {
            frequencies[voices] = freq;
            volumes[voices]     = vol;
            voices++;
        }

        gptStart(&GPTD8, &gpt8cfg1);
        gptStartContinuous(&GPTD8, 2U);
        RESTART_CHANNEL_1();
        RESTART_CHANNEL_2();
    }
}

void play_notes(float (*np)[][2], uint16_t n_count, bool n_repeat) {
    if (!audio_initialized) {
        audio_init();
    }

    if (audio_config.enable) {
        // Cancel note if a note is playing
        if (playing_note) {
            stop_all_notes();
        }

        playing_notes = true;

        notes_pointer = np;
        notes_count   = n_count;
        notes_repeat  = n_repeat;

        place        = 0;
        current_note = 0;

        note_frequency = (*notes_pointer)[current_note][0];
        note_length    = ((*notes_pointer)[current_note][1] / 4) * (((float)note_tempo) / 100);
        note_position  = 0;

        gptStart(&GPTD8, &gpt8cfg1);
        gptStartContinuous(&GPTD8, 2U);
        RESTART_CHANNEL_1();
        RESTART_CHANNEL_2();
    }
}

bool is_playing_notes(void) { return playing_notes; }

bool is_audio_on(void) { return (audio_config.enable != 0); }

void audio_toggle(void) {
    if (audio_config.enable) {
        stop_all_notes();
    }
    audio_config.enable ^= 1;
    eeconfig_update_audio(audio_config.raw);
    if (audio_config.enable) {
        audio_on_user();
    }
}

void audio_on(void) {
    audio_config.enable = 1;
    eeconfig_update_audio(audio_config.raw);
    audio_on_user();
}

void audio_off(void) {
    stop_all_notes();
    audio_config.enable = 0;
    eeconfig_update_audio(audio_config.raw);
}

#ifdef VIBRATO_ENABLE

// Vibrato rate functions

void set_vibrato_rate(float rate) { vibrato_rate = rate; }

void increase_vibrato_rate(float change) { vibrato_rate *= change; }

void decrease_vibrato_rate(float change) { vibrato_rate /= change; }

#    ifdef VIBRATO_STRENGTH_ENABLE

void set_vibrato_strength(float strength) { vibrato_strength = strength; }

void increase_vibrato_strength(float change) { vibrato_strength *= change; }

void decrease_vibrato_strength(float change) { vibrato_strength /= change; }

#    endif /* VIBRATO_STRENGTH_ENABLE */

#endif /* VIBRATO_ENABLE */

// Polyphony functions

void set_polyphony_rate(float rate) { polyphony_rate = rate; }

void enable_polyphony() { polyphony_rate = 5; }

void disable_polyphony() { polyphony_rate = 0; }

void increase_polyphony_rate(float change) { polyphony_rate *= change; }

void decrease_polyphony_rate(float change) { polyphony_rate /= change; }

// Timbre function

void set_timbre(float timbre) { note_timbre = timbre; }

// Tempo functions

void set_tempo(uint8_t tempo) { note_tempo = tempo; }

void decrease_tempo(uint8_t tempo_change) { note_tempo += tempo_change; }

void increase_tempo(uint8_t tempo_change) {
    if (note_tempo - tempo_change < 10) {
        note_tempo = 10;
    } else {
        note_tempo -= tempo_change;
    }
}