summaryrefslogtreecommitdiffstats
path: root/platforms/avr/drivers/i2c_master.c
blob: d4024378cafe03bf9a7cdf3727842b14c8da140a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
/*  Copyright (C) 2019 Elia Ritterbusch
 +
 *  This program is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program.  If not, see <https://www.gnu.org/licenses/>.
 */
/* Library made by: g4lvanix
 * GitHub repository: https://github.com/g4lvanix/I2C-master-lib
 */

#include <avr/io.h>
#include <util/twi.h>

#include "i2c_master.h"
#include "timer.h"
#include "wait.h"

#ifndef F_SCL
#    define F_SCL 400000UL  // SCL frequency
#endif

#ifndef I2C_START_RETRY_COUNT
#    define I2C_START_RETRY_COUNT 20
#endif  // I2C_START_RETRY_COUNT

#define I2C_ACTION_READ 0x01
#define I2C_ACTION_WRITE 0x00

#define TWBR_val (((F_CPU / F_SCL) - 16) / 2)

#define MAX(X, Y) ((X) > (Y) ? (X) : (Y))

void i2c_init(void) {
    TWSR = 0; /* no prescaler */
    TWBR = (uint8_t)TWBR_val;

#ifdef __AVR_ATmega32A__
    // set pull-up resistors on I2C bus pins
    PORTC |= 0b11;

    // enable TWI (two-wire interface)
    TWCR |= (1 << TWEN);

    // enable TWI interrupt and slave address ACK
    TWCR |= (1 << TWIE);
    TWCR |= (1 << TWEA);
#endif
}

static i2c_status_t i2c_start_impl(uint8_t address, uint16_t timeout) {
    // reset TWI control register
    TWCR = 0;
    // transmit START condition
    TWCR = (1 << TWINT) | (1 << TWSTA) | (1 << TWEN);

    uint16_t timeout_timer = timer_read();
    while (!(TWCR & (1 << TWINT))) {
        if ((timeout != I2C_TIMEOUT_INFINITE) && ((timer_read() - timeout_timer) >= timeout)) {
            return I2C_STATUS_TIMEOUT;
        }
    }

    // check if the start condition was successfully transmitted
    if (((TW_STATUS & 0xF8) != TW_START) && ((TW_STATUS & 0xF8) != TW_REP_START)) {
        return I2C_STATUS_ERROR;
    }

    // load slave address into data register
    TWDR = address;
    // start transmission of address
    TWCR = (1 << TWINT) | (1 << TWEN);

    timeout_timer = timer_read();
    while (!(TWCR & (1 << TWINT))) {
        if ((timeout != I2C_TIMEOUT_INFINITE) && ((timer_read() - timeout_timer) >= timeout)) {
            return I2C_STATUS_TIMEOUT;
        }
    }

    // check if the device has acknowledged the READ / WRITE mode
    uint8_t twst = TW_STATUS & 0xF8;
    if ((twst != TW_MT_SLA_ACK) && (twst != TW_MR_SLA_ACK)) {
        return I2C_STATUS_ERROR;
    }

    return I2C_STATUS_SUCCESS;
}

i2c_status_t i2c_start(uint8_t address, uint16_t timeout) {
    // Retry i2c_start_impl a bunch times in case the remote side has interrupts disabled.
    uint16_t     timeout_timer = timer_read();
    uint16_t     time_slice    = MAX(1, (timeout == (I2C_TIMEOUT_INFINITE)) ? 5 : (timeout / (I2C_START_RETRY_COUNT)));  // if it's infinite, wait 1ms between attempts, otherwise split up the entire timeout into the number of retries
    i2c_status_t status;
    do {
        status = i2c_start_impl(address, time_slice);
    } while ((status < 0) && ((timeout == I2C_TIMEOUT_INFINITE) || (timer_elapsed(timeout_timer) < timeout)));
    return status;
}

i2c_status_t i2c_write(uint8_t data, uint16_t timeout) {
    // load data into data register
    TWDR = data;
    // start transmission of data
    TWCR = (1 << TWINT) | (1 << TWEN);

    uint16_t timeout_timer = timer_read();
    while (!(TWCR & (1 << TWINT))) {
        if ((timeout != I2C_TIMEOUT_INFINITE) && ((timer_read() - timeout_timer) >= timeout)) {
            return I2C_STATUS_TIMEOUT;
        }
    }

    if ((TW_STATUS & 0xF8) != TW_MT_DATA_ACK) {
        return I2C_STATUS_ERROR;
    }

    return I2C_STATUS_SUCCESS;
}

int16_t i2c_read_ack(uint16_t timeout) {
    // start TWI module and acknowledge data after reception
    TWCR = (1 << TWINT) | (1 << TWEN) | (1 << TWEA);

    uint16_t timeout_timer = timer_read();
    while (!(TWCR & (1 << TWINT))) {
        if ((timeout != I2C_TIMEOUT_INFINITE) && ((timer_read() - timeout_timer) >= timeout)) {
            return I2C_STATUS_TIMEOUT;
        }
    }

    // return received data from TWDR
    return TWDR;
}

int16_t i2c_read_nack(uint16_t timeout) {
    // start receiving without acknowledging reception
    TWCR = (1 << TWINT) | (1 << TWEN);

    uint16_t timeout_timer = timer_read();
    while (!(TWCR & (1 << TWINT))) {
        if ((timeout != I2C_TIMEOUT_INFINITE) && ((timer_read() - timeout_timer) >= timeout)) {
            return I2C_STATUS_TIMEOUT;
        }
    }

    // return received data from TWDR
    return TWDR;
}

i2c_status_t i2c_transmit(uint8_t address, const uint8_t* data, uint16_t length, uint16_t timeout) {
    i2c_status_t status = i2c_start(address | I2C_ACTION_WRITE, timeout);

    for (uint16_t i = 0; i < length && status >= 0; i++) {
        status = i2c_write(data[i], timeout);
    }

    i2c_stop();

    return status;
}

i2c_status_t i2c_receive(uint8_t address, uint8_t* data, uint16_t length, uint16_t timeout) {
    i2c_status_t status = i2c_start(address | I2C_ACTION_READ, timeout);

    for (uint16_t i = 0; i < (length - 1) && status >= 0; i++) {
        status = i2c_read_ack(timeout);
        if (status >= 0) {
            data[i] = status;
        }
    }

    if (status >= 0) {
        status = i2c_read_nack(timeout);
        if (status >= 0) {
            data[(length - 1)] = status;
        }
    }

    i2c_stop();

    return (status < 0) ? status : I2C_STATUS_SUCCESS;
}

i2c_status_t i2c_writeReg(uint8_t devaddr, uint8_t regaddr, const uint8_t* data, uint16_t length, uint16_t timeout) {
    i2c_status_t status = i2c_start(devaddr | 0x00, timeout);
    if (status >= 0) {
        status = i2c_write(regaddr, timeout);

        for (uint16_t i = 0; i < length && status >= 0; i++) {
            status = i2c_write(data[i], timeout);
        }
    }

    i2c_stop();

    return status;
}

i2c_status_t i2c_writeReg16(uint8_t devaddr, uint16_t regaddr, const uint8_t* data, uint16_t length, uint16_t timeout) {
    i2c_status_t status = i2c_start(devaddr | 0x00, timeout);
    if (status >= 0) {
        status = i2c_write(regaddr >> 8, timeout);

        if (status >= 0) {
            status = i2c_write(regaddr & 0xFF, timeout);

            for (uint16_t i = 0; i < length && status >= 0; i++) {
                status = i2c_write(data[i], timeout);
            }
        }
    }

    i2c_stop();

    return status;
}

i2c_status_t i2c_readReg(uint8_t devaddr, uint8_t regaddr, uint8_t* data, uint16_t length, uint16_t timeout) {
    i2c_status_t status = i2c_start(devaddr, timeout);
    if (status < 0) {
        goto error;
    }

    status = i2c_write(regaddr, timeout);
    if (status < 0) {
        goto error;
    }

    status = i2c_start(devaddr | 0x01, timeout);

    for (uint16_t i = 0; i < (length - 1) && status >= 0; i++) {
        status = i2c_read_ack(timeout);
        if (status >= 0) {
            data[i] = status;
        }
    }

    if (status >= 0) {
        status = i2c_read_nack(timeout);
        if (status >= 0) {
            data[(length - 1)] = status;
        }
    }

error:
    i2c_stop();

    return (status < 0) ? status : I2C_STATUS_SUCCESS;
}

i2c_status_t i2c_readReg16(uint8_t devaddr, uint16_t regaddr, uint8_t* data, uint16_t length, uint16_t timeout) {
    i2c_status_t status = i2c_start(devaddr, timeout);
    if (status < 0) {
        goto error;
    }

    status = i2c_write(regaddr >> 8, timeout);
    if (status < 0) {
        goto error;
    }
    status = i2c_write(regaddr & 0xFF, timeout);
    if (status < 0) {
        goto error;
    }

    status = i2c_start(devaddr | 0x01, timeout);

    for (uint16_t i = 0; i < (length - 1) && status >= 0; i++) {
        status = i2c_read_ack(timeout);
        if (status >= 0) {
            data[i] = status;
        }
    }

    if (status >= 0) {
        status = i2c_read_nack(timeout);
        if (status >= 0) {
            data[(length - 1)] = status;
        }
    }

error:
    i2c_stop();

    return (status < 0) ? status : I2C_STATUS_SUCCESS;
}

void i2c_stop(void) {
    // transmit STOP condition
    TWCR = (1 << TWINT) | (1 << TWEN) | (1 << TWSTO);
}