blob: 6a33e89976a567a554566691eadd546a1c1d1d49 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
|
/* Copyright 2017 Mattia Dal Ben
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "quantum.h"
#include "matrix.h"
#include "uart.h"
#define UART_MATRIX_RESPONSE_TIMEOUT 10000
void matrix_init_custom(void) {
uart_init(1000000);
}
bool matrix_scan_custom(matrix_row_t current_matrix[]) {
uint32_t timeout = 0;
bool changed = false;
//the s character requests the RF slave to send the matrix
uart_write('s');
//trust the external keystates entirely, erase the last data
uint8_t uart_data[11] = {0};
//there are 14 bytes corresponding to 14 columns, and an end byte
for (uint8_t i = 0; i < 11; i++) {
//wait for the serial data, timeout if it's been too long
//this only happened in testing with a loose wire, but does no
//harm to leave it in here
while (!uart_available()) {
timeout++;
if (timeout > UART_MATRIX_RESPONSE_TIMEOUT) {
break;
}
}
if (timeout < UART_MATRIX_RESPONSE_TIMEOUT) {
uart_data[i] = uart_read();
} else {
uart_data[i] = 0x00;
}
}
//check for the end packet, the key state bytes use the LSBs, so 0xE0
//will only show up here if the correct bytes were recieved
if (uart_data[10] == 0xE0) {
//shifting and transferring the keystates to the QMK matrix variable
for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
matrix_row_t current_row = (uint16_t) uart_data[i * 2] | (uint16_t) uart_data[i * 2 + 1] << 7;
if (current_matrix[i] != current_row) {
changed = true;
}
current_matrix[i] = current_row;
}
}
return changed;
}
|