1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
|
/* Copyright 2022 @ Keychron (https://www.keychron.com)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "quantum.h"
#include "indicator.h"
#include "transport.h"
#define HC595_STCP B0
#define HC595_SHCP A1
#define HC595_DS A7
pin_t row_pins[MATRIX_ROWS] = MATRIX_ROW_PINS;
pin_t col_pins[MATRIX_COLS] = MATRIX_COL_PINS;
extern indicator_config_t indicator_config;
static uint32_t power_on_indicator_timer_buffer;
extern bool bat_low_led_pin_state;
#define POWER_ON_LED_DURATION 3000
static inline void HC595_delay(uint16_t n) {
while (n-- > 0) {
asm volatile("nop" ::: "memory");
};
}
static void HC595_output(uint32_t data) {
uint8_t i;
uint8_t n = 1;
for (i = 0; i < (MATRIX_COLS + 3); i++) {
writePinLow(HC595_SHCP);
if (data & 0x1)
writePinHigh(HC595_DS);
else
writePinLow(HC595_DS);
data >>= 1;
HC595_delay(n);
writePinHigh(HC595_SHCP);
HC595_delay(n);
}
HC595_delay(n);
writePinLow(HC595_STCP);
HC595_delay(n);
writePinHigh(HC595_STCP);
}
static inline void setPinOutput_writeLow(pin_t pin) {
ATOMIC_BLOCK_FORCEON {
setPinOutput(pin);
writePinLow(pin);
}
}
static inline void setPinInput_high(pin_t pin) {
ATOMIC_BLOCK_FORCEON {
setPinInputHigh(pin);
}
}
static inline uint8_t readMatrixPin(pin_t pin) {
if (pin != NO_PIN) {
return readPin(pin);
} else {
return 1;
}
}
static bool select_col(uint8_t col) {
pin_t pin = col_pins[col];
uint32_t value = 0;
if (pin != NO_PIN) {
setPinOutput_writeLow(pin);
return true;
} else {
if (power_on_indicator_timer_buffer) {
if (sync_timer_elapsed32(power_on_indicator_timer_buffer) > POWER_ON_LED_DURATION) {
power_on_indicator_timer_buffer = 0;
HC595_output((~(0x1 << (21 - col - 1))) & (7 << 0));
} else {
HC595_output((~(0x1 << (21 - col - 1))));
}
} else {
if (get_transport() == TRANSPORT_BLUETOOTH) {
if (indicator_config.value) {
if (indicator_config.value & 0x80) {
value = ~(0x1 << (21 - col - 1)) & ~(3 << 0);
HC595_output(value);
} else {
value = (~(0x1 << (21 - col - 1))) & ~(7 << 0);
HC595_output(value);
}
} else {
if (host_keyboard_led_state().caps_lock) {
value = (~(0x1 << (21 - col - 1))) & ~(5 << 0);
HC595_output(value);
} else {
value = (~(0x1 << (21 - col - 1))) & ~(7 << 0);
HC595_output(value);
}
}
if (bat_low_led_pin_state) {
HC595_output(value | (1 << 0));
}
} else {
if (host_keyboard_led_state().caps_lock) {
HC595_output((~(0x1 << (21 - col - 1))) & ~(5 << 0));
} else {
HC595_output((~(0x1 << (21 - col - 1))) & ~(7 << 0));
}
}
}
return true;
}
return false;
}
static void unselect_col(uint8_t col) {
pin_t pin = col_pins[col];
uint32_t value = 0;
if (pin != NO_PIN) {
#ifdef MATRIX_UNSELECT_DRIVE_HIGH
setPinOutput_writeHigh(pin);
#else
setPinInput_high(pin);
#endif
} else {
if (power_on_indicator_timer_buffer) {
if (sync_timer_elapsed32(power_on_indicator_timer_buffer) > POWER_ON_LED_DURATION) {
power_on_indicator_timer_buffer = 0;
HC595_output(0x1FFFFF & ~(7 << 0));
} else {
HC595_output(0x1FFFFF);
}
} else {
if (get_transport() == TRANSPORT_BLUETOOTH) {
if (indicator_config.value) {
if (indicator_config.value & 0x80) {
if (col == (MATRIX_COLS - 1)) {
value = 0x1FFFFF & ~(3 << 0);
HC595_output(value);
}
} else {
if (col == (MATRIX_COLS - 1)) {
if (col == (MATRIX_COLS - 1)) {
value = 0x1FFFFF & ~(7 << 0);
HC595_output(value);
}
}
}
} else {
if (host_keyboard_led_state().caps_lock) {
if (col == (MATRIX_COLS - 1)) {
if (col == (MATRIX_COLS - 1)) {
value = 0x1FFFFF & ~(5 << 0);
HC595_output(value);
}
}
} else {
if (col == (MATRIX_COLS - 1)) {
if (col == (MATRIX_COLS - 1)) {
value = 0x1FFFFF & ~(7 << 0);
HC595_output(value);
}
}
}
}
if (bat_low_led_pin_state) {
HC595_output(value | (1 << 0));
}
} else {
if (host_keyboard_led_state().caps_lock) {
if (col == (MATRIX_COLS - 1)) {
HC595_output(0x1FFFFF & ~(5 << 0));
}
} else {
if (col == (MATRIX_COLS - 1)) {
HC595_output(0x1FFFFF & ~(7 << 0));
}
}
}
}
}
}
static void unselect_cols(void) {
for (uint8_t x = 0; x < MATRIX_COLS; x++) {
pin_t pin = col_pins[x];
if (pin != NO_PIN) {
#ifdef MATRIX_UNSELECT_DRIVE_HIGH
setPinOutput_writeHigh(pin);
#else
setPinInput_high(pin);
#endif
} else {
if (x == 0) {
HC595_output(0xFFFFFFFF);
power_on_indicator_timer_buffer = sync_timer_read32() | 1;
}
}
}
}
void select_all_cols(void) {
for (uint8_t x = 0; x < MATRIX_COLS; x++) {
pin_t pin = col_pins[x];
if (pin != NO_PIN) {
setPinOutput_writeLow(pin);
} else {
if (x == 0) {
if (host_keyboard_led_state().caps_lock) {
HC595_output(0x00000000 | (2 << 0));
} else {
HC595_output(0x00000000);
}
}
}
}
}
void matrix_read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col) {
// Select col
if (!select_col(current_col)) { // select col
return; // skip NO_PIN col
}
HC595_delay(200);
// For each row...
for (uint8_t row_index = 0; row_index < MATRIX_ROWS; row_index++) {
// Check row pin state
if (readMatrixPin(row_pins[row_index]) == 0) {
// Pin LO, set col bit
current_matrix[row_index] |= (MATRIX_ROW_SHIFTER << current_col);
// key_pressed = true;
} else {
// Pin HI, clear col bit
current_matrix[row_index] &= ~(MATRIX_ROW_SHIFTER << current_col);
}
}
unselect_col(current_col);
HC595_delay(200);
}
void matrix_init_custom(void) {
setPinOutput(HC595_DS);
setPinOutput(HC595_STCP);
setPinOutput(HC595_SHCP);
for (uint8_t x = 0; x < MATRIX_ROWS; x++) {
if (row_pins[x] != NO_PIN) {
setPinInput_high(row_pins[x]);
}
}
unselect_cols();
}
bool matrix_scan_custom(matrix_row_t current_matrix[]) {
bool matrix_has_changed = false;
matrix_row_t curr_matrix[MATRIX_ROWS] = {0};
// Set col, read rows
for (uint8_t current_col = 0; current_col < MATRIX_COLS; current_col++) {
matrix_read_rows_on_col(curr_matrix, current_col);
}
matrix_has_changed = memcmp(current_matrix, curr_matrix, sizeof(curr_matrix)) != 0;
if (matrix_has_changed) memcpy(current_matrix, curr_matrix, sizeof(curr_matrix));
return matrix_has_changed;
}
|