summaryrefslogtreecommitdiffstats
path: root/keyboards/dichotomy/matrix.c
blob: 806b66d498cdebc0b8a0471fa5d41d4c08d15cad (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
/*
Copyright 2012 Jun Wako
Copyright 2014 Jack Humbert

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdint.h>
#include <stdbool.h>
#if defined(__AVR__)
#include <avr/io.h>
#endif
#include "wait.h"
#include "print.h"
#include "debug.h"
#include "util.h"
#include "matrix.h"
#include "timer.h"
#include "dichotomy.h"
#include "pointing_device.h"
#include "report.h"
#include "uart.h"

#if (MATRIX_COLS <= 8)
#    define print_matrix_header()  print("\nr/c 01234567\n")
#    define print_matrix_row(row)  print_bin_reverse8(matrix_get_row(row))
#    define matrix_bitpop(i)       bitpop(matrix[i])
#    define ROW_SHIFTER ((uint8_t)1)
#elif (MATRIX_COLS <= 16)
#    define print_matrix_header()  print("\nr/c 0123456789ABCDEF\n")
#    define print_matrix_row(row)  print_bin_reverse16(matrix_get_row(row))
#    define matrix_bitpop(i)       bitpop16(matrix[i])
#    define ROW_SHIFTER ((uint16_t)1)
#elif (MATRIX_COLS <= 32)
#    define print_matrix_header()  print("\nr/c 0123456789ABCDEF0123456789ABCDEF\n")
#    define print_matrix_row(row)  print_bin_reverse32(matrix_get_row(row))
#    define matrix_bitpop(i)       bitpop32(matrix[i])
#    define ROW_SHIFTER  ((uint32_t)1)
#endif

#define MAIN_ROWMASK 0xFFF0;
#define LOWER_ROWMASK 0x3FC0;

/* matrix state(1:on, 0:off) */
static matrix_row_t matrix[MATRIX_ROWS];

__attribute__ ((weak))
void matrix_init_quantum(void) {
    matrix_init_kb();
}

__attribute__ ((weak))
void matrix_scan_quantum(void) {
    matrix_scan_kb();
}

__attribute__ ((weak))
void matrix_init_kb(void) {
    matrix_init_user();
}

__attribute__ ((weak))
void matrix_scan_kb(void) {
    matrix_scan_user();
}

__attribute__ ((weak))
void matrix_init_user(void) {
}

__attribute__ ((weak))
void matrix_scan_user(void) {
}

inline
uint8_t matrix_rows(void) {
    return MATRIX_ROWS;
}

inline
uint8_t matrix_cols(void) {
    return MATRIX_COLS;
}

void matrix_init(void) {
    matrix_init_quantum();
    uart_init(1000000);
}

uint8_t matrix_scan(void)
{
    //xprintf("\r\nTRYING TO SCAN");

    uint32_t timeout = 0;

    //the s character requests the RF slave to send the matrix
    uart_write('s');

    //trust the external keystates entirely, erase the last data
    uint8_t uart_data[11] = {0};

    //there are 10 bytes corresponding to 10 columns, and an end byte
    for (uint8_t i = 0; i < 11; i++) {
        //wait for the serial data, timeout if it's been too long
        //this only happened in testing with a loose wire, but does no
        //harm to leave it in here
        while(!uart_available()){
            timeout++;
            if (timeout > 10000){
		xprintf("\r\nTime out in keyboard.");
                break;
            }
        }
        uart_data[i] = uart_read();
    }

    //check for the end packet, the key state bytes use the LSBs, so 0xE0
    //will only show up here if the correct bytes were recieved
            uint8_t checksum = 0x00;
            for (uint8_t z=0; z<10; z++){
                checksum = checksum^uart_data[z];
            }
            checksum = checksum ^ (uart_data[10] & 0xF0);
            // Smash the checksum from 1 byte into 4 bits
            checksum = (checksum ^ ((checksum & 0xF0)>>4)) & 0x0F;
//xprintf("\r\nGOT RAW PACKET: \r\n%d\r\n%d\r\n%d\r\n%d\r\n%d\r\n%d\r\n%d\r\n%d\r\n%d\r\n%d\r\n%d\r\n%d",uart_data[0],uart_data[1],uart_data[2],uart_data[3],uart_data[4],uart_data[5],uart_data[6],uart_data[7],uart_data[8],uart_data[9],uart_data[10],checksum);
    if ((uart_data[10] & 0x0F) == checksum) { //this is an arbitrary binary checksum (1001) (that would be 0x9.)
	//xprintf("\r\nGOT PACKET: \r\n%d\r\n%d\r\n%d\r\n%d\r\n%d\r\n%d",uart_data[0],uart_data[1],uart_data[2],uart_data[3],uart_data[4],uart_data[5]);
        //shifting and transferring the keystates to the QMK matrix variable
		//bits 1-12 are row 1, 13-24 are row 2, 25-36 are row 3,
		//bits 37-42 are row 4 (only 6 wide, 1-3 are 0, and 10-12 are 0)
		//bits 43-48 are row 5 (same as row 4)
		/* ASSUMING MSB FIRST */
		matrix[0] = (((uint16_t) uart_data[0] << 8) | ((uint16_t) uart_data[1])) & MAIN_ROWMASK;
		matrix[1] = ((uint16_t) uart_data[1] << 12) | ((uint16_t) uart_data[2] << 4);
		matrix[2] = (((uint16_t) uart_data[3] << 8) | ((uint16_t) uart_data[4])) & MAIN_ROWMASK;
		matrix[3] = (((uint16_t) uart_data[4] << 9) | ((uint16_t) uart_data[5] << 1)) & LOWER_ROWMASK;
		matrix[4] = (((uint16_t) uart_data[5] << 7) | ((uart_data[10] & 1<<7) ? 1:0) << 13 | ((uart_data[10] & 1<<6) ? 1:0) << 6) & LOWER_ROWMASK;
		/* OK, TURNS OUT THAT WAS A BAD ASSUMPTION */
        for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
			//I've unpacked these into the mirror image of what QMK expects them to be, so...
			/*uint8_t halfOne = (matrix[i]>>8);
			uint8_t halfTwo = (matrix[i] & 0xFF);
			halfOne = ((halfOne * 0x0802LU & 0x22110LU) | (halfOne * 0x8020LU & 0x88440LU)) * 0x10101LU >> 16;
			halfTwo = ((halfTwo * 0x0802LU & 0x22110LU) | (halfTwo * 0x8020LU & 0x88440LU)) * 0x10101LU >> 16;
			matrix[i] = ((halfTwo<<8) & halfOne);*/
			//matrix[i] = ((matrix[i] * 0x0802LU & 0x22110LU) | (matrix[i] * 0x8020LU & 0x88440LU)) * 0x10101LU >> 16;
			matrix[i] = bitrev16(matrix[i]);
			//bithack mirror!  Doesn't make any sense, but works - and efficiently.
        }
	//if (uart_data[6]!=0 || uart_data[7]!=0){
	//if (maxCount<101){
	//	xprintf("\r\nMouse data: x=%d, y=%d",(int8_t)uart_data[6],(int8_t)uart_data[7]);
	//}
	report_mouse_t currentReport = {};
        //check for the end packet, bytes 1-4 are movement and scroll
        //but byte 5 has bits 0-3 for the scroll button state
	//(1000 if pressed, 0000 if not) and bits 4-7 are always 1
	//We can use this to verify the report sent properly.

	currentReport = pointing_device_get_report();
        //shifting and transferring the info to the mouse report varaible
        //mouseReport.x = 127 max -127 min
	currentReport.x = (int8_t) uart_data[6];
        //mouseReport.y = 127 max -127 min
	currentReport.y = (int8_t) uart_data[7];
        //mouseReport.v = 127 max -127 min (scroll vertical)
	currentReport.v = (int8_t) uart_data[8];
        //mouseReport.h = 127 max -127 min (scroll horizontal)
	currentReport.h = (int8_t) uart_data[9];
	/*
	currentReport.x = 0;
	currentReport.y = 0;
	currentReport.v = 0;
	currentReport.h = 0;*/
	pointing_device_set_report(currentReport);
    } else {
	//xprintf("\r\nRequested packet, data 10 was %d but checksum was %d",(uart_data[10] & 0x0F), (checksum & 0x0F));
    }
    //matrix_print();

    matrix_scan_quantum();
    return 1;
}

inline
bool matrix_is_on(uint8_t row, uint8_t col)
{
    return (matrix[row] & ((matrix_row_t)1<<col));
}

inline
matrix_row_t matrix_get_row(uint8_t row)
{
    return matrix[row];
}

void matrix_print(void)
{
    print_matrix_header();

    for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
        print_hex8(row); print(": ");
        print_matrix_row(row);
        print("\n");
    }
}

uint8_t matrix_key_count(void)
{
    uint8_t count = 0;
    for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
        count += matrix_bitpop(i);
    }
    return count;
}