summaryrefslogtreecommitdiffstats
path: root/keyboards/clueboard/2x1800/2019/2019.c
blob: 29f7a4901ceb91e0b392d8613bc13eaacb035884 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
/* Copyright 2017 Zach White <skullydazed@gmail.com>
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */
#include "2019.h"

void matrix_init_kb(void) {
    // Set our LED pins as output
    setPinOutput(D6);
    setPinOutput(B4);
    setPinOutput(B5);
    setPinOutput(B6);

    // Set our Tilt Sensor pins as input
    setPinInputHigh(SHAKE_PIN_A);
    setPinInputHigh(SHAKE_PIN_B);

    // Run the keymap level init
    matrix_init_user();
}

#ifdef DRAWING_ENABLE
bool drawing_mode = false;
bool btn1_pressed = false;
bool btn2_pressed = false;
bool btn3_pressed = false;
bool btn4_pressed = false;

void check_encoder_buttons(void) {
    if (btn1_pressed && btn2_pressed && btn3_pressed && btn4_pressed) {
        // All 4 buttons pressed, toggle drawing mode
	if (drawing_mode) {
            dprintf("Turning drawing mode off.\n");
            drawing_mode = false;
            writePinLow(D6);
	    unregister_code(KC_BTN1);
	} else {
            dprintf("Turning drawing mode on.\n");
            drawing_mode = true;
            writePinHigh(D6);
	    register_code(KC_BTN1);
	}
    }
}
#endif

#ifdef SHAKE_ENABLE
uint8_t tilt_state = 0x11;
uint8_t detected_shakes = 0;
static uint16_t shake_timer;
#endif

void matrix_scan_kb(void) {
#ifdef SHAKE_ENABLE
    // Read the current state of the tilt sensor. It is physically
    // impossible for both pins to register a low state at the same time.
    uint8_t tilt_read = (readPin(SHAKE_PIN_A) << 4) | readPin(SHAKE_PIN_B);

    // Check to see if the tilt sensor has changed state since our last read
    if (tilt_state != tilt_read) {
        shake_timer = timer_read();
        detected_shakes++;
        tilt_state = tilt_read;
    }

    if ((detected_shakes > 0) && (timer_elapsed(shake_timer) > SHAKE_TIMEOUT)) {
        if (detected_shakes > SHAKE_COUNT) {
            dprintf("Shake triggered! We detected %d shakes.\n", detected_shakes);
            tap_code16(SHAKE_KEY);
        } else {
            dprintf("Shake not triggered! We detected %d shakes.\n", detected_shakes);
        }
        detected_shakes = 0;
    }
#endif

    matrix_scan_user();
}

bool process_record_kb(uint16_t keycode, keyrecord_t *record) {
#ifdef DRAWING_ENABLE
    if (keycode == ENC_BTN1) {
        if (record->event.pressed) {
            btn1_pressed = true;
	    register_code(KC_BTN1);
	} else {
            btn1_pressed = false;
	    unregister_code(KC_BTN1);
	}
    }
    if (keycode == ENC_BTN2) {
        if (record->event.pressed) {
            btn2_pressed = true;
	    register_code(KC_BTN2);
	} else {
            btn2_pressed = false;
	    unregister_code(KC_BTN2);
	}
    }
    if (keycode == ENC_BTN3) {
        if (record->event.pressed) {
            btn3_pressed = true;
	    register_code(KC_BTN3);
	} else {
            btn3_pressed = false;
	    unregister_code(KC_BTN3);
	}
    }
    if (keycode == ENC_BTN4) {
        if (record->event.pressed) {
            btn4_pressed = true;
	    register_code(KC_BTN4);
	} else {
            btn4_pressed = false;
	    unregister_code(KC_BTN4);
	}
    }

    check_encoder_buttons();
#endif

    return process_record_user(keycode, record);
}

bool led_update_kb(led_t led_state) {
    bool res = led_update_user(led_state);
    if(res) {
        writePin(B4, !led_state.num_lock);
        writePin(B5, !led_state.caps_lock);
        writePin(B6, !led_state.scroll_lock);
    }

    return res;
}

__attribute__ ((weak))
bool encoder_update_keymap(int8_t index, bool clockwise) {
    return false;
}

void encoder_update_kb(int8_t index, bool clockwise) {
    if (!encoder_update_keymap(index, clockwise)) {
        // Encoder 1, outside left
        if (index == 0 && clockwise) {
            tap_code(KC_MS_U);  // turned right
        } else if (index == 0) {
            tap_code(KC_MS_D);  // turned left
        }

        // Encoder 2, inside left
        else if (index == 1 && clockwise) {
            tap_code(KC_WH_D);  // turned right
        } else if (index == 1) {
            tap_code(KC_WH_U);  // turned left
        }

        // Encoder 3, inside right
        else if (index == 2 && clockwise) {
            tap_code(KC_VOLU);  // turned right
        } else if (index == 2) {
            tap_code(KC_VOLD);  // turned left
        }

        // Encoder 4, outside right
        else if (index == 3 && clockwise) {
            tap_code(KC_MS_R);   // turned right
        } else if (index == 3) {
            tap_code(KC_MS_L);   // turned left
        }
    }
}