#include <avr/eeprom.h> #include <avr/interrupt.h> #include <util/delay.h> #include "progmem.h" #include "timer.h" #include "rgblight.h" #include "debug.h" // Lightness curve using the CIE 1931 lightness formula //Generated by the python script provided in http://jared.geek.nz/2013/feb/linear-led-pwm const uint8_t DIM_CURVE[] PROGMEM = { 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 12, 12, 12, 13, 13, 13, 14, 14, 15, 15, 15, 16, 16, 17, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 28, 28, 29, 29, 30, 31, 31, 32, 32, 33, 34, 34, 35, 36, 37, 37, 38, 39, 39, 40, 41, 42, 43, 43, 44, 45, 46, 47, 47, 48, 49, 50, 51, 52, 53, 54, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 94, 95, 96, 98, 99, 100, 102, 103, 105, 106, 108, 109, 110, 112, 113, 115, 116, 118, 120, 121, 123, 124, 126, 128, 129, 131, 132, 134, 136, 138, 139, 141, 143, 145, 146, 148, 150, 152, 154, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173, 175, 177, 179, 181, 183, 185, 187, 189, 191, 193, 196, 198, 200, 202, 204, 207, 209, 211, 214, 216, 218, 220, 223, 225, 228, 230, 232, 235, 237, 240, 242, 245, 247, 250, 252, 255, }; const uint8_t RGBLED_BREATHING_TABLE[] PROGMEM = { 0, 0, 0, 0, 1, 1, 1, 2, 2, 3, 4, 5, 5, 6, 7, 9, 10, 11, 12, 14, 15, 17, 18, 20, 21, 23, 25, 27, 29, 31, 33, 35, 37, 40, 42, 44, 47, 49, 52, 54, 57, 59, 62, 65, 67, 70, 73, 76, 79, 82, 85, 88, 90, 93, 97, 100, 103, 106, 109, 112, 115, 118, 121, 124, 127, 131, 134, 137, 140, 143, 146, 149, 152, 155, 158, 162, 165, 167, 170, 173, 176, 179, 182, 185, 188, 190, 193, 196, 198, 201, 203, 206, 208, 211, 213, 215, 218, 220, 222, 224, 226, 228, 230, 232, 234, 235, 237, 238, 240, 241, 243, 244, 245, 246, 248, 249, 250, 250, 251, 252, 253, 253, 254, 254, 254, 255, 255, 255, 255, 255, 255, 255, 254, 254, 254, 253, 253, 252, 251, 250, 250, 249, 248, 246, 245, 244, 243, 241, 240, 238, 237, 235, 234, 232, 230, 228, 226, 224, 222, 220, 218, 215, 213, 211, 208, 206, 203, 201, 198, 196, 193, 190, 188, 185, 182, 179, 176, 173, 170, 167, 165, 162, 158, 155, 152, 149, 146, 143, 140, 137, 134, 131, 128, 124, 121, 118, 115, 112, 109, 106, 103, 100, 97, 93, 90, 88, 85, 82, 79, 76, 73, 70, 67, 65, 62, 59, 57, 54, 52, 49, 47, 44, 42, 40, 37, 35, 33, 31, 29, 27, 25, 23, 21, 20, 18, 17, 15, 14, 12, 11, 10, 9, 7, 6, 5, 5, 4, 3, 2, 2, 1, 1, 1, 0, 0, 0 }; __attribute__ ((weak)) const uint8_t RGBLED_BREATHING_INTERVALS[] PROGMEM = {30, 20, 10, 5}; __attribute__ ((weak)) const uint8_t RGBLED_RAINBOW_MOOD_INTERVALS[] PROGMEM = {120, 60, 30}; __attribute__ ((weak)) const uint8_t RGBLED_RAINBOW_SWIRL_INTERVALS[] PROGMEM = {100, 50, 20}; __attribute__ ((weak)) const uint8_t RGBLED_SNAKE_INTERVALS[] PROGMEM = {100, 50, 20}; __attribute__ ((weak)) const uint8_t RGBLED_KNIGHT_INTERVALS[] PROGMEM = {100, 50, 20}; __attribute__ ((weak)) const uint16_t RGBLED_GRADIENT_RANGES[] PROGMEM = {360, 240, 180, 120, 90}; rgblight_config_t rgblight_config; rgblight_config_t inmem_config; LED_TYPE led[RGBLED_NUM]; uint8_t rgblight_inited = 0; bool rgblight_timer_enabled = false; void sethsv(uint16_t hue, uint8_t sat, uint8_t val, LED_TYPE *led1) { uint8_t r = 0, g = 0, b = 0, base, color; if (sat == 0) { // Acromatic color (gray). Hue doesn't mind. r = val; g = val; b = val; } else { base = ((255 - sat) * val) >> 8; color = (val - base) * (hue % 60) / 60; switch (hue / 60) { case 0: r = val; g = base + color; b = base; break; case 1: r = val - color; g = val; b = base; break; case 2: r = base; g = val; b = base + color; break; case 3: r = base; g = val - color; b = val; break; case 4: r = base + color; g = base; b = val; break; case 5: r = val; g = base; b = val - color; break; } } r = pgm_read_byte(&DIM_CURVE[r]); g = pgm_read_byte(&DIM_CURVE[g]); b = pgm_read_byte(&DIM_CURVE[b]); setrgb(r, g, b, led1); } void setrgb(uint8_t r, uint8_t g, uint8_t b, LED_TYPE *led1) { (*led1).r = r; (*led1).g = g; (*led1).b = b; } uint32_t eeconfig_read_rgblight(void) { return eeprom_read_dword(EECONFIG_RGBLIGHT); } void eeconfig_update_rgblight(uint32_t val) { eeprom_update_dword(EECONFIG_RGBLIGHT, val); } void eeconfig_update_rgblight_default(void) { dprintf("eeconfig_update_rgblight_default\n"); rgblight_config.enable = 1; rgblight_config.mode = 1; rgblight_config.hue = 0; rgblight_config.sat = 255; rgblight_config.val = 255; eeconfig_update_rgblight(rgblight_config.raw); } void eeconfig_debug_rgblight(void) { dprintf("rgblight_config eprom\n"); dprintf("rgblight_config.enable = %d\n", rgblight_config.enable); dprintf("rghlight_config.mode = %d\n", rgblight_config.mode); dprintf("rgblight_config.hue = %d\n", rgblight_config.hue); dprintf("rgblight_config.sat = %d\n", rgblight_config.sat); dprintf("rgblight_config.val = %d\n", rgblight_config.val); } void rgblight_init(void) { debug_enable = 1; // Debug ON! dprintf("rgblight_init called.\n"); rgblight_inited = 1; dprintf("rgblight_init start!\n"); if (!eeconfig_is_enabled()) { dprintf("rgblight_init eeconfig is not enabled.\n"); eeconfig_init(); eeconfig_update_rgblight_default(); } rgblight_config.raw = eeconfig_read_rgblight(); if (!rgblight_config.mode) { dprintf("rgblight_init rgblight_config.mode = 0. Write default values to EEPROM.\n"); eeconfig_update_rgblight_default(); rgblight_config.raw = eeconfig_read_rgblight(); } eeconfig_debug_rgblight(); // display current eeprom values #ifdef RGBLIGHT_ANIMATIONS rgblight_timer_init(); // setup the timer #endif if (rgblight_config.enable) { rgblight_mode(rgblight_config.mode); } } void rgblight_update_dword(uint32_t dword) { rgblight_config.raw = dword; eeconfig_update_rgblight(rgblight_config.raw); if (rgblight_config.enable) rgblight_mode(rgblight_config.mode); else { #ifdef RGBLIGHT_ANIMATIONS rgblight_timer_disable(); #endif rgblight_set(); } } void rgblight_increase(void) { uint8_t mode = 0; if (rgblight_config.mode < RGBLIGHT_MODES) { mode = rgblight_config.mode + 1; } rgblight_mode(mode); } void rgblight_decrease(void) { uint8_t mode = 0; // Mode will never be < 1. If it ever is, eeprom needs to be initialized. if (rgblight_config.mode > 1) { mode = rgblight_config.mode - 1; } rgblight_mode(mode); } void rgblight_step(void) { uint8_t mode = 0; mode = rgblight_config.mode + 1; if (mode > RGBLIGHT_MODES) { mode = 1; } rgblight_mode(mode); } void rgblight_step_reverse(void) { uint8_t mode = 0; mode = rgblight_config.mode - 1; if (mode < 1) { mode = RGBLIGHT_MODES; } rgblight_mode(mode); } void rgblight_mode(uint8_t mode) { if (!rgblight_config.enable) { return; } if (mode < 1) { rgblight_config.mode = 1; } else if (mode > RGBLIGHT_MODES) { rgblight_config.mode = RGBLIGHT_MODES; } else { rgblight_config.mode = mode; } eeconfig_update_rgblight(rgblight_config.raw); xprintf("rgblight mode: %u\n", rgblight_config.mode); if (rgblight_config.mode == 1) { #ifdef RGBLIGHT_ANIMATIONS rgblight_timer_disable(); #endif } else if (rgblight_config.mode >= 2 && rgblight_config.mode <= 24) { // MODE 2-5, breathing // MODE 6-8, rainbow mood // MODE 9-14, rainbow swirl // MODE 15-20, snake // MODE 21-23, knight #ifdef RGBLIGHT_ANIMATIONS rgblight_timer_enable(); #endif } else if (rgblight_config.mode >= 25 && rgblight_config.mode <= 34) { // MODE 25-34, static gradient #ifdef RGBLIGHT_ANIMATIONS rgblight_timer_disable(); #endif } rgblight_sethsv(rgblight_config.hue, rgblight_config.sat, rgblight_config.val); } void rgblight_toggle(void) { rgblight_config.enable ^= 1; eeconfig_update_rgblight(rgblight_config.raw); xprintf("rgblight toggle: rgblight_config.enable = %u\n", rgblight_config.enable); if (rgblight_config.enable) { rgblight_mode(rgblight_config.mode); } else { #ifdef RGBLIGHT_ANIMATIONS rgblight_timer_disable(); #endif _delay_ms(50); rgblight_set(); } } void rgblight_enable(void) { rgblight_config.enable = 1; eeconfig_update_rgblight(rgblight_config.raw); xprintf("rgblight enable: rgblight_config.enable = %u\n", rgblight_config.enable); rgblight_mode(rgblight_config.mode); } void rgblight_increase_hue(void) { uint16_t hue; hue = (rgblight_config.hue+RGBLIGHT_HUE_STEP) % 360; rgblight_sethsv(hue, rgblight_config.sat, rgblight_config.val); } void rgblight_decrease_hue(void) { uint16_t hue; if (rgblight_config.hue-RGBLIGHT_HUE_STEP < 0) { hue = (rgblight_config.hue + 360 - RGBLIGHT_HUE_STEP) % 360; } else { hue = (rgblight_config.hue - RGBLIGHT_HUE_STEP) % 360; } rgblight_sethsv(hue, rgblight_config.sat, rgblight_config.val); } void rgblight_increase_sat(void) { uint8_t sat; if (rgblight_config.sat + RGBLIGHT_SAT_STEP > 255) { sat = 255; } else { sat = rgblight_config.sat + RGBLIGHT_SAT_STEP; } rgblight_sethsv(rgblight_config.hue, sat, rgblight_config.val); } void rgblight_decrease_sat(void) { uint8_t sat; if (rgblight_config.sat - RGBLIGHT_SAT_STEP < 0) { sat = 0; } else { sat = rgblight_config.sat - RGBLIGHT_SAT_STEP; } rgblight_sethsv(rgblight_config.hue, sat, rgblight_config.val); } void rgblight_increase_val(void) { uint8_t val; if (rgblight_config.val + RGBLIGHT_VAL_STEP > 255) { val = 255; } else { val = rgblight_config.val + RGBLIGHT_VAL_STEP; } rgblight_sethsv(rgblight_config.hue, rgblight_config.sat, val); } void rgblight_decrease_val(void) { uint8_t val; if (rgblight_config.val - RGBLIGHT_VAL_STEP < 0) { val = 0; } else { val = rgblight_config.val - RGBLIGHT_VAL_STEP; } rgblight_sethsv(rgblight_config.hue, rgblight_config.sat, val); } void rgblight_sethsv_noeeprom(uint16_t hue, uint8_t sat, uint8_t val) { inmem_config.raw = rgblight_config.raw; if (rgblight_config.enable) { LED_TYPE tmp_led; sethsv(hue, sat, val, &tmp_led); inmem_config.hue = hue; inmem_config.sat = sat; inmem_config.val = val; // dprintf("rgblight set hue [MEMORY]: %u,%u,%u\n", inmem_config.hue, inmem_config.sat, inmem_config.val); rgblight_setrgb(tmp_led.r, tmp_led.g, tmp_led.b); } } void rgblight_sethsv(uint16_t hue, uint8_t sat, uint8_t val) { if (rgblight_config.enable) { if (rgblight_config.mode == 1) { // same static color rgblight_sethsv_noeeprom(hue, sat, val); } else { // all LEDs in same color if (rgblight_config.mode >= 2 && rgblight_config.mode <= 5) { // breathing mode, ignore the change of val, use in memory value instead val = rgblight_config.val; } else if (rgblight_config.mode >= 6 && rgblight_config.mode <= 14) { // rainbow mood and rainbow swirl, ignore the change of hue hue = rgblight_config.hue; } else if (rgblight_config.mode >= 25 && rgblight_config.mode <= 34) { // static gradient uint16_t _hue; int8_t direction = ((rgblight_config.mode - 25) % 2) ? -1 : 1; uint16_t range = pgm_read_word(&RGBLED_GRADIENT_RANGES[(rgblight_config.mode - 25) / 2]); for (uint8_t i = 0; i < RGBLED_NUM; i++) { _hue = (range / RGBLED_NUM * i * direction + hue + 360) % 360; dprintf("rgblight rainbow set hsv: %u,%u,%d,%u\n", i, _hue, direction, range); sethsv(_hue, sat, val, (LED_TYPE *)&led[i]); } rgblight_set(); } } rgblight_config.hue = hue; rgblight_config.sat = sat; rgblight_config.val = val; eeconfig_update_rgblight(rgblight_config.raw); xprintf("rgblight set hsv [EEPROM]: %u,%u,%u\n", rgblight_config.hue, rgblight_config.sat, rgblight_config.val); } } void rgblight_setrgb(uint8_t r, uint8_t g, uint8_t b) { // dprintf("rgblight set rgb: %u,%u,%u\n", r,g,b); for (uint8_t i = 0; i < RGBLED_NUM; i++) { led[i].r = r; led[i].g = g; led[i].b = b; } rgblight_set(); } __attribute__ ((weak)) void rgblight_set(void) { if (rgblight_config.enable) { #ifdef RGBW ws2812_setleds_rgbw(led, RGBLED_NUM); #else ws2812_setleds(led, RGBLED_NUM); #endif } else { for (uint8_t i = 0; i < RGBLED_NUM; i++) { led[i].r = 0; led[i].g = 0; led[i].b = 0; } #ifdef RGBW ws2812_setleds_rgbw(led, RGBLED_NUM); #else ws2812_setleds(led, RGBLED_NUM); #endif } } #ifdef RGBLIGHT_ANIMATIONS // Animation timer -- AVR Timer3 void rgblight_timer_init(void) { // static uint8_t rgblight_timer_is_init = 0; // if (rgblight_timer_is_init) { // return; // } // rgblight_timer_is_init = 1; // /* Timer 3 setup */ // TCCR3B = _BV(WGM32) // CTC mode OCR3A as TOP // | _BV(CS30); // Clock selelct: clk/1 // /* Set TOP value */ // uint8_t sreg = SREG; // cli(); // OCR3AH = (RGBLED_TIMER_TOP >> 8) & 0xff; // OCR3AL = RGBLED_TIMER_TOP & 0xff; // SREG = sreg; rgblight_timer_enabled = true; } void rgblight_timer_enable(void) { rgblight_timer_enabled = true; dprintf("TIMER3 enabled.\n"); } void rgblight_timer_disable(void) { rgblight_timer_enabled = false; dprintf("TIMER3 disabled.\n"); } void rgblight_timer_toggle(void) { rgblight_timer_enabled ^= rgblight_timer_enabled; dprintf("TIMER3 toggled.\n"); } void rgblight_show_solid_color(uint8_t r, uint8_t g, uint8_t b) { rgblight_enable(); rgblight_mode(1); rgblight_setrgb(r, g, b); } void rgblight_task(void) { if (rgblight_timer_enabled) { // mode = 1, static light, do nothing here if (rgblight_config.mode >= 2 && rgblight_config.mode <= 5) { // mode = 2 to 5, breathing mode rgblight_effect_breathing(rgblight_config.mode - 2); } else if (rgblight_config.mode >= 6 && rgblight_config.mode <= 8) { // mode = 6 to 8, rainbow mood mod rgblight_effect_rainbow_mood(rgblight_config.mode - 6); } else if (rgblight_config.mode >= 9 && rgblight_config.mode <= 14) { // mode = 9 to 14, rainbow swirl mode rgblight_effect_rainbow_swirl(rgblight_config.mode - 9); } else if (rgblight_config.mode >= 15 && rgblight_config.mode <= 20) { // mode = 15 to 20, snake mode rgblight_effect_snake(rgblight_config.mode - 15); } else if (rgblight_config.mode >= 21 && rgblight_config.mode <= 23) { // mode = 21 to 23, knight mode rgblight_effect_knight(rgblight_config.mode - 21); } else if (rgblight_config.mode == 24) { // mode = 24, christmas mode rgblight_effect_christmas(); } } } // Effects void rgblight_effect_breathing(uint8_t interval) { static uint8_t pos = 0; static uint16_t last_timer = 0; if (timer_elapsed(last_timer) < pgm_read_byte(&RGBLED_BREATHING_INTERVALS[interval])) { return; } last_timer = timer_read(); rgblight_sethsv_noeeprom(rgblight_config.hue, rgblight_config.sat, pgm_read_byte(&RGBLED_BREATHING_TABLE[pos])); pos = (pos + 1) % 256; } void rgblight_effect_rainbow_mood(uint8_t interval) { static uint16_t current_hue = 0; static uint16_t last_timer = 0; if (timer_elapsed(last_timer) < pgm_read_byte(&RGBLED_RAINBOW_MOOD_INTERVALS[interval])) { return; } last_timer = timer_read(); rgblight_sethsv_noeeprom(current_hue, rgblight_config.sat, rgblight_config.val); current_hue = (current_hue + 1) % 360; } void rgblight_effect_rainbow_swirl(uint8_t interval) { static uint16_t current_hue = 0; static uint16_t last_timer = 0; uint16_t hue; uint8_t i; if (timer_elapsed(last_timer) < pgm_read_byte(&RGBLED_RAINBOW_MOOD_INTERVALS[interval / 2])) { return; } last_timer = timer_read(); for (i = 0; i < RGBLED_NUM; i++) { hue = (360 / RGBLED_NUM * i + current_hue) % 360; sethsv(hue, rgblight_config.sat, rgblight_config.val, (LED_TYPE *)&led[i]); } rgblight_set(); if (interval % 2) { current_hue = (current_hue + 1) % 360; } else { if (current_hue - 1 < 0) { current_hue = 359; } else { current_hue = current_hue - 1; } } } void rgblight_effect_snake(uint8_t interval) { static uint8_t pos = 0; static uint16_t last_timer = 0; uint8_t i, j; int8_t k; int8_t increment = 1; if (interval % 2) { increment = -1; } if (timer_elapsed(last_timer) < pgm_read_byte(&RGBLED_SNAKE_INTERVALS[interval / 2])) { return; } last_timer = timer_read(); for (i = 0; i < RGBLED_NUM; i++) { led[i].r = 0; led[i].g = 0; led[i].b = 0; for (j = 0; j < RGBLIGHT_EFFECT_SNAKE_LENGTH; j++) { k = pos + j * increment; if (k < 0) { k = k + RGBLED_NUM; } if (i == k) { sethsv(rgblight_config.hue, rgblight_config.sat, (uint8_t)(rgblight_config.val*(RGBLIGHT_EFFECT_SNAKE_LENGTH-j)/RGBLIGHT_EFFECT_SNAKE_LENGTH), (LED_TYPE *)&led[i]); } } } rgblight_set(); if (increment == 1) { if (pos - 1 < 0) { pos = RGBLED_NUM - 1; } else { pos -= 1; } } else { pos = (pos + 1) % RGBLED_NUM; } } void rgblight_effect_knight(uint8_t interval) { static int8_t pos = 0; static uint16_t last_timer = 0; uint8_t i, j, cur; int8_t k; LED_TYPE preled[RGBLED_NUM]; static int8_t increment = -1; if (timer_elapsed(last_timer) < pgm_read_byte(&RGBLED_KNIGHT_INTERVALS[interval])) { return; } last_timer = timer_read(); for (i = 0; i < RGBLED_NUM; i++) { preled[i].r = 0; preled[i].g = 0; preled[i].b = 0; for (j = 0; j < RGBLIGHT_EFFECT_KNIGHT_LENGTH; j++) { k = pos + j * increment; if (k < 0) { k = 0; } if (k >= RGBLED_NUM) { k = RGBLED_NUM - 1; } if (i == k) { sethsv(rgblight_config.hue, rgblight_config.sat, rgblight_config.val, (LED_TYPE *)&preled[i]); } } } if (RGBLIGHT_EFFECT_KNIGHT_OFFSET) { for (i = 0; i < RGBLED_NUM; i++) { cur = (i + RGBLIGHT_EFFECT_KNIGHT_OFFSET) % RGBLED_NUM; led[i].r = preled[cur].r; led[i].g = preled[cur].g; led[i].b = preled[cur].b; } } rgblight_set(); if (increment == 1) { if (pos - 1 < 0 - RGBLIGHT_EFFECT_KNIGHT_LENGTH) { pos = 0 - RGBLIGHT_EFFECT_KNIGHT_LENGTH; increment = -1; } else { pos -= 1; } } else { if (pos + 1 > RGBLED_NUM + RGBLIGHT_EFFECT_KNIGHT_LENGTH) { pos = RGBLED_NUM + RGBLIGHT_EFFECT_KNIGHT_LENGTH - 1; increment = 1; } else { pos += 1; } } } void rgblight_effect_christmas(void) { static uint16_t current_offset = 0; static uint16_t last_timer = 0; uint16_t hue; uint8_t i; if (timer_elapsed(last_timer) < RGBLIGHT_EFFECT_CHRISTMAS_INTERVAL) { return; } last_timer = timer_read(); current_offset = (current_offset + 1) % 2; for (i = 0; i < RGBLED_NUM; i++) { hue = 0 + ((i/RGBLIGHT_EFFECT_CHRISTMAS_STEP + current_offset) % 2) * 120; sethsv(hue, rgblight_config.sat, rgblight_config.val, (LED_TYPE *)&led[i]); } rgblight_set(); } #endif