/* Copyright 2017 Jason Williams * Copyright 2017 Jack Humbert * Copyright 2018 Yiancar * Copyright 2019 Clueboard * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "led_matrix.h" #include "progmem.h" #include "config.h" #include "eeprom.h" #include #include #include "led_tables.h" #include #if defined(LED_DISABLE_AFTER_TIMEOUT) && !defined(LED_DISABLE_TIMEOUT) # define LED_DISABLE_TIMEOUT (LED_DISABLE_AFTER_TIMEOUT * 1200UL) #endif #ifndef LED_DISABLE_TIMEOUT # define LED_DISABLE_TIMEOUT 0 #endif #ifndef LED_DISABLE_WHEN_USB_SUSPENDED # define LED_DISABLE_WHEN_USB_SUSPENDED false #endif #if !defined(LED_MATRIX_MAXIMUM_BRIGHTNESS) || LED_MATRIX_MAXIMUM_BRIGHTNESS > UINT8_MAX # undef LED_MATRIX_MAXIMUM_BRIGHTNESS # define LED_MATRIX_MAXIMUM_BRIGHTNESS UINT8_MAX #endif #if !defined(LED_MATRIX_VAL_STEP) # define LED_MATRIX_VAL_STEP 8 #endif #if !defined(LED_MATRIX_SPD_STEP) # define LED_MATRIX_SPD_STEP 16 #endif #if !defined(LED_MATRIX_STARTUP_MODE) # define LED_MATRIX_STARTUP_MODE LED_MATRIX_UNIFORM_BRIGHTNESS #endif #if !defined(LED_MATRIX_STARTUP_VAL) # define LED_MATRIX_STARTUP_VAL LED_MATRIX_MAXIMUM_BRIGHTNESS #endif #if !defined(LED_MATRIX_STARTUP_SPD) # define LED_MATRIX_STARTUP_SPD UINT8_MAX / 2 #endif // globals bool g_suspend_state = false; led_eeconfig_t led_matrix_eeconfig; // TODO: would like to prefix this with g_ for global consistancy, do this in another pr uint32_t g_led_timer; #ifdef LED_MATRIX_FRAMEBUFFER_EFFECTS uint8_t g_led_frame_buffer[MATRIX_ROWS][MATRIX_COLS] = {{0}}; #endif // LED_MATRIX_FRAMEBUFFER_EFFECTS #ifdef LED_MATRIX_KEYREACTIVE_ENABLED last_hit_t g_last_hit_tracker; #endif // LED_MATRIX_KEYREACTIVE_ENABLED // internals static uint8_t led_last_enable = UINT8_MAX; static uint8_t led_last_effect = UINT8_MAX; static effect_params_t led_effect_params = {0, LED_FLAG_ALL, false}; static led_task_states led_task_state = SYNCING; #if LED_DISABLE_TIMEOUT > 0 static uint32_t led_anykey_timer; #endif // LED_DISABLE_TIMEOUT > 0 // double buffers static uint32_t led_timer_buffer; #ifdef LED_MATRIX_KEYREACTIVE_ENABLED static last_hit_t last_hit_buffer; #endif // LED_MATRIX_KEYREACTIVE_ENABLED // split led matrix #if defined(LED_MATRIX_ENABLE) && defined(LED_MATRIX_SPLIT) const uint8_t k_led_matrix_split[2] = LED_MATRIX_SPLIT; #endif void eeconfig_read_led_matrix(void) { eeprom_read_block(&led_matrix_eeconfig, EECONFIG_LED_MATRIX, sizeof(led_matrix_eeconfig)); } void eeconfig_update_led_matrix(void) { eeprom_update_block(&led_matrix_eeconfig, EECONFIG_LED_MATRIX, sizeof(led_matrix_eeconfig)); } void eeconfig_update_led_matrix_default(void) { dprintf("eeconfig_update_led_matrix_default\n"); led_matrix_eeconfig.enable = 1; led_matrix_eeconfig.mode = LED_MATRIX_STARTUP_MODE; led_matrix_eeconfig.val = LED_MATRIX_STARTUP_VAL; led_matrix_eeconfig.speed = LED_MATRIX_STARTUP_SPD; led_matrix_eeconfig.flags = LED_FLAG_ALL; eeconfig_update_led_matrix(); } void eeconfig_debug_led_matrix(void) { dprintf("led_matrix_eeconfig EEPROM\n"); dprintf("led_matrix_eeconfig.enable = %d\n", led_matrix_eeconfig.enable); dprintf("led_matrix_eeconfig.mode = %d\n", led_matrix_eeconfig.mode); dprintf("led_matrix_eeconfig.val = %d\n", led_matrix_eeconfig.val); dprintf("led_matrix_eeconfig.speed = %d\n", led_matrix_eeconfig.speed); dprintf("led_matrix_eeconfig.flags = %d\n", led_matrix_eeconfig.flags); } __attribute__((weak)) uint8_t led_matrix_map_row_column_to_led_kb(uint8_t row, uint8_t column, uint8_t *led_i) { return 0; } uint8_t led_matrix_map_row_column_to_led(uint8_t row, uint8_t column, uint8_t *led_i) { uint8_t led_count = led_matrix_map_row_column_to_led_kb(row, column, led_i); uint8_t led_index = g_led_config.matrix_co[row][column]; if (led_index != NO_LED) { led_i[led_count] = led_index; led_count++; } return led_count; } void led_matrix_update_pwm_buffers(void) { led_matrix_driver.flush(); } void led_matrix_set_value(int index, uint8_t value) { #if defined(LED_MATRIX_ENABLE) && defined(LED_MATRIX_SPLIT) if (!is_keyboard_left() && index >= k_led_matrix_split[0]) # ifdef USE_CIE1931_CURVE led_matrix_driver.set_value(index - k_led_matrix_split[0], pgm_read_byte(&CIE1931_CURVE[value])); # else led_matrix_driver.set_value(index - k_led_matrix_split[0], value); # endif else if (is_keyboard_left() && index < k_led_matrix_split[0]) #endif # ifdef USE_CIE1931_CURVE led_matrix_driver.set_value(index, pgm_read_byte(&CIE1931_CURVE[value])); # else led_matrix_driver.set_value(index, value); # endif } void led_matrix_set_value_all(uint8_t value) { #if defined(LED_MATRIX_ENABLE) && defined(LED_MATRIX_SPLIT) for (uint8_t i = 0; i < DRIVER_LED_TOTAL; i++) led_matrix_set_value(i, value); #else # ifdef USE_CIE1931_CURVE led_matrix_driver.set_value_all(pgm_read_byte(&CIE1931_CURVE[value])); # else led_matrix_driver.set_value_all(value); # endif #endif } void process_led_matrix(uint8_t row, uint8_t col, bool pressed) { #ifndef LED_MATRIX_SPLIT if (!is_keyboard_master()) return; #endif #if LED_DISABLE_TIMEOUT > 0 led_anykey_timer = 0; #endif // LED_DISABLE_TIMEOUT > 0 #ifdef LED_MATRIX_KEYREACTIVE_ENABLED uint8_t led[LED_HITS_TO_REMEMBER]; uint8_t led_count = 0; # if defined(LED_MATRIX_KEYRELEASES) if (!pressed) # elif defined(LED_MATRIX_KEYPRESSES) if (pressed) # endif // defined(LED_MATRIX_KEYRELEASES) { led_count = led_matrix_map_row_column_to_led(row, col, led); } if (last_hit_buffer.count + led_count > LED_HITS_TO_REMEMBER) { memcpy(&last_hit_buffer.x[0], &last_hit_buffer.x[led_count], LED_HITS_TO_REMEMBER - led_count); memcpy(&last_hit_buffer.y[0], &last_hit_buffer.y[led_count], LED_HITS_TO_REMEMBER - led_count); memcpy(&last_hit_buffer.tick[0], &last_hit_buffer.tick[led_count], (LED_HITS_TO_REMEMBER - led_count) * 2); // 16 bit memcpy(&last_hit_buffer.index[0], &last_hit_buffer.index[led_count], LED_HITS_TO_REMEMBER - led_count); last_hit_buffer.count--; } for (uint8_t i = 0; i < led_count; i++) { uint8_t index = last_hit_buffer.count; last_hit_buffer.x[index] = g_led_config.point[led[i]].x; last_hit_buffer.y[index] = g_led_config.point[led[i]].y; last_hit_buffer.index[index] = led[i]; last_hit_buffer.tick[index] = 0; last_hit_buffer.count++; } #endif // LED_MATRIX_KEYREACTIVE_ENABLED #if defined(LED_MATRIX_FRAMEBUFFER_EFFECTS) && !defined(DISABLE_LED_MATRIX_TYPING_HEATMAP) if (led_matrix_eeconfig.mode == LED_MATRIX_TYPING_HEATMAP) { process_led_matrix_typing_heatmap(row, col); } #endif // defined(LED_MATRIX_FRAMEBUFFER_EFFECTS) && !defined(DISABLE_LED_MATRIX_TYPING_HEATMAP) } static bool led_matrix_none(effect_params_t *params) { if (!params->init) { return false; } led_matrix_set_value_all(0); return false; } static bool led_matrix_uniform_brightness(effect_params_t *params) { LED_MATRIX_USE_LIMITS(led_min, led_max); uint8_t val = led_matrix_eeconfig.val; for (uint8_t i = led_min; i < led_max; i++) { LED_MATRIX_TEST_LED_FLAGS(); led_matrix_set_value(i, val); } return led_max < DRIVER_LED_TOTAL; } static void led_task_timers(void) { #if defined(LED_MATRIX_KEYREACTIVE_ENABLED) || LED_DISABLE_TIMEOUT > 0 uint32_t deltaTime = sync_timer_elapsed32(led_timer_buffer); #endif // defined(LED_MATRIX_KEYREACTIVE_ENABLED) || LED_DISABLE_TIMEOUT > 0 led_timer_buffer = sync_timer_read32(); // Update double buffer timers #if LED_DISABLE_TIMEOUT > 0 if (led_anykey_timer < UINT32_MAX) { if (UINT32_MAX - deltaTime < led_anykey_timer) { led_anykey_timer = UINT32_MAX; } else { led_anykey_timer += deltaTime; } } #endif // LED_DISABLE_TIMEOUT > 0 // Update double buffer last hit timers #ifdef LED_MATRIX_KEYREACTIVE_ENABLED uint8_t count = last_hit_buffer.count; for (uint8_t i = 0; i < count; ++i) { if (UINT16_MAX - deltaTime < last_hit_buffer.tick[i]) { last_hit_buffer.count--; continue; } last_hit_buffer.tick[i] += deltaTime; } #endif // LED_MATRIX_KEYREACTIVE_ENABLED } static void led_task_sync(void) { // next task if (sync_timer_elapsed32(g_led_timer) >= LED_MATRIX_LED_FLUSH_LIMIT) led_task_state = STARTING; } static void led_task_start(void) { // reset iter led_effect_params.iter = 0; // update double buffers g_led_timer = led_timer_buffer; #ifdef LED_MATRIX_KEYREACTIVE_ENABLED g_last_hit_tracker = last_hit_buffer; #endif // LED_MATRIX_KEYREACTIVE_ENABLED // next task led_task_state = RENDERING; } static void led_task_render(uint8_t effect) { bool rendering = false; led_effect_params.init = (effect != led_last_effect) || (led_matrix_eeconfig.enable != led_last_enable); if (led_effect_params.flags != led_matrix_eeconfig.flags) { led_effect_params.flags = led_matrix_eeconfig.flags; led_matrix_set_value_all(0); } // each effect can opt to do calculations // and/or request PWM buffer updates. switch (effect) { case LED_MATRIX_NONE: rendering = led_matrix_none(&led_effect_params); break; case LED_MATRIX_UNIFORM_BRIGHTNESS: rendering = led_matrix_uniform_brightness(&led_effect_params); break; } led_effect_params.iter++; // next task if (!rendering) { led_task_state = FLUSHING; if (!led_effect_params.init && effect == LED_MATRIX_NONE) { // We only need to flush once if we are LED_MATRIX_NONE led_task_state = SYNCING; } } } static void led_task_flush(uint8_t effect) { // update last trackers after the first full render so we can init over several frames led_last_effect = effect; led_last_enable = led_matrix_eeconfig.enable; // update pwm buffers led_matrix_update_pwm_buffers(); // next task led_task_state = SYNCING; } void led_matrix_task(void) { led_task_timers(); // Ideally we would also stop sending zeros to the LED driver PWM buffers // while suspended and just do a software shutdown. This is a cheap hack for now. bool suspend_backlight = #if LED_DISABLE_WHEN_USB_SUSPENDED == true g_suspend_state || #endif // LED_DISABLE_WHEN_USB_SUSPENDED == true #if LED_DISABLE_TIMEOUT > 0 (led_anykey_timer > (uint32_t)LED_DISABLE_TIMEOUT) || #endif // LED_DISABLE_TIMEOUT > 0 false; uint8_t effect = suspend_backlight || !led_matrix_eeconfig.enable ? 0 : led_matrix_eeconfig.mode; switch (led_task_state) { case STARTING: led_task_start(); break; case RENDERING: led_task_render(effect); if (effect) { led_matrix_indicators(); led_matrix_indicators_advanced(&led_effect_params); } break; case FLUSHING: led_task_flush(effect); break; case SYNCING: led_task_sync(); break; } } void led_matrix_indicators(void) { led_matrix_indicators_kb(); led_matrix_indicators_user(); } __attribute__((weak)) void led_matrix_indicators_kb(void) {} __attribute__((weak)) void led_matrix_indicators_user(void) {} void led_matrix_indicators_advanced(effect_params_t *params) { /* special handling is needed for "params->iter", since it's already been incremented. * Could move the invocations to led_task_render, but then it's missing a few checks * and not sure which would be better. Otherwise, this should be called from * led_task_render, right before the iter++ line. */ #if defined(LED_MATRIX_LED_PROCESS_LIMIT) && LED_MATRIX_LED_PROCESS_LIMIT > 0 && LED_MATRIX_LED_PROCESS_LIMIT < DRIVER_LED_TOTAL uint8_t min = LED_MATRIX_LED_PROCESS_LIMIT * (params->iter - 1); uint8_t max = min + LED_MATRIX_LED_PROCESS_LIMIT; if (max > DRIVER_LED_TOTAL) max = DRIVER_LED_TOTAL; #else uint8_t min = 0; uint8_t max = DRIVER_LED_TOTAL; #endif led_matrix_indicators_advanced_kb(min, max); led_matrix_indicators_advanced_user(min, max); } __attribute__((weak)) void led_matrix_indicators_advanced_kb(uint8_t led_min, uint8_t led_max) {} __attribute__((weak)) void led_matrix_indicators_advanced_user(uint8_t led_min, uint8_t led_max) {} void led_matrix_init(void) { led_matrix_driver.init(); #ifdef LED_MATRIX_KEYREACTIVE_ENABLED g_last_hit_tracker.count = 0; for (uint8_t i = 0; i < LED_HITS_TO_REMEMBER; ++i) { g_last_hit_tracker.tick[i] = UINT16_MAX; } last_hit_buffer.count = 0; for (uint8_t i = 0; i < LED_HITS_TO_REMEMBER; ++i) { last_hit_buffer.tick[i] = UINT16_MAX; } #endif // LED_MATRIX_KEYREACTIVE_ENABLED if (!eeconfig_is_enabled()) { dprintf("led_matrix_init_drivers eeconfig is not enabled.\n"); eeconfig_init(); eeconfig_update_led_matrix_default(); } eeconfig_read_led_matrix(); if (!led_matrix_eeconfig.mode) { dprintf("led_matrix_init_drivers led_matrix_eeconfig.mode = 0. Write default values to EEPROM.\n"); eeconfig_update_led_matrix_default(); } eeconfig_debug_led_matrix(); // display current eeprom values } void led_matrix_set_suspend_state(bool state) { if (LED_DISABLE_WHEN_USB_SUSPENDED && state) { led_matrix_set_value_all(0); // turn off all LEDs when suspending } g_suspend_state = state; } bool led_matrix_get_suspend_state(void) { return g_suspend_state; } void led_matrix_toggle_eeprom_helper(bool write_to_eeprom) { led_matrix_eeconfig.enable ^= 1; led_task_state = STARTING; if (write_to_eeprom) { eeconfig_update_led_matrix(); } dprintf("led matrix toggle [%s]: led_matrix_eeconfig.enable = %u\n", (write_to_eeprom) ? "EEPROM" : "NOEEPROM", led_matrix_eeconfig.enable); } void led_matrix_toggle_noeeprom(void) { led_matrix_toggle_eeprom_helper(false); } void led_matrix_toggle(void) { led_matrix_toggle_eeprom_helper(true); } void led_matrix_enable(void) { led_matrix_enable_noeeprom(); eeconfig_update_led_matrix(); } void led_matrix_enable_noeeprom(void) { if (!led_matrix_eeconfig.enable) led_task_state = STARTING; led_matrix_eeconfig.enable = 1; } void led_matrix_disable(void) { led_matrix_disable_noeeprom(); eeconfig_update_led_matrix(); } void led_matrix_disable_noeeprom(void) { if (led_matrix_eeconfig.enable) led_task_state = STARTING; led_matrix_eeconfig.enable = 0; } uint8_t led_matrix_is_enabled(void) { return led_matrix_eeconfig.enable; } void led_matrix_mode_eeprom_helper(uint8_t mode, bool write_to_eeprom) { if (!led_matrix_eeconfig.enable) { return; } if (mode < 1) { led_matrix_eeconfig.mode = 1; } else if (mode >= LED_MATRIX_EFFECT_MAX) { led_matrix_eeconfig.mode = LED_MATRIX_EFFECT_MAX - 1; } else { led_matrix_eeconfig.mode = mode; } led_task_state = STARTING; if (write_to_eeprom) { eeconfig_update_led_matrix(); } dprintf("led matrix mode [%s]: %u\n", (write_to_eeprom) ? "EEPROM" : "NOEEPROM", led_matrix_eeconfig.mode); } void led_matrix_mode_noeeprom(uint8_t mode) { led_matrix_mode_eeprom_helper(mode, false); } void led_matrix_mode(uint8_t mode) { led_matrix_mode_eeprom_helper(mode, true); } uint8_t led_matrix_get_mode(void) { return led_matrix_eeconfig.mode; } void led_matrix_step_helper(bool write_to_eeprom) { uint8_t mode = led_matrix_eeconfig.mode + 1; led_matrix_mode_eeprom_helper((mode < LED_MATRIX_EFFECT_MAX) ? mode : 1, write_to_eeprom); } void led_matrix_step_noeeprom(void) { led_matrix_step_helper(false); } void led_matrix_step(void) { led_matrix_step_helper(true); } void led_matrix_step_reverse_helper(bool write_to_eeprom) { uint8_t mode = led_matrix_eeconfig.mode - 1; led_matrix_mode_eeprom_helper((mode < 1) ? LED_MATRIX_EFFECT_MAX - 1 : mode, write_to_eeprom); } void led_matrix_step_reverse_noeeprom(void) { led_matrix_step_reverse_helper(false); } void led_matrix_step_reverse(void) { led_matrix_step_reverse_helper(true); } void led_matrix_set_val_eeprom_helper(uint8_t val, bool write_to_eeprom) { if (!led_matrix_eeconfig.enable) { return; } led_matrix_eeconfig.val = (val > LED_MATRIX_MAXIMUM_BRIGHTNESS) ? LED_MATRIX_MAXIMUM_BRIGHTNESS : val; if (write_to_eeprom) { eeconfig_update_led_matrix(); } dprintf("led matrix set val [%s]: %u\n", (write_to_eeprom) ? "EEPROM" : "NOEEPROM", led_matrix_eeconfig.val); } void led_matrix_set_val_noeeprom(uint8_t val) { led_matrix_set_val_eeprom_helper(val, false); } void led_matrix_set_val(uint8_t val) { led_matrix_set_val_eeprom_helper(val, true); } uint8_t led_matrix_get_val(void) { return led_matrix_eeconfig.val; } void led_matrix_increase_val_helper(bool write_to_eeprom) { led_matrix_set_val_eeprom_helper(qadd8(led_matrix_eeconfig.val, LED_MATRIX_VAL_STEP), write_to_eeprom); } void led_matrix_increase_val_noeeprom(void) { led_matrix_increase_val_helper(false); } void led_matrix_increase_val(void) { led_matrix_increase_val_helper(true); } void led_matrix_decrease_val_helper(bool write_to_eeprom) { led_matrix_set_val_eeprom_helper(qsub8(led_matrix_eeconfig.val, LED_MATRIX_VAL_STEP), write_to_eeprom); } void led_matrix_decrease_val_noeeprom(void) { led_matrix_decrease_val_helper(false); } void led_matrix_decrease_val(void) { led_matrix_decrease_val_helper(true); } void led_matrix_set_speed_eeprom_helper(uint8_t speed, bool write_to_eeprom) { led_matrix_eeconfig.speed = speed; if (write_to_eeprom) { eeconfig_update_led_matrix(); } dprintf("led matrix set speed [%s]: %u\n", (write_to_eeprom) ? "EEPROM" : "NOEEPROM", led_matrix_eeconfig.speed); } void led_matrix_set_speed_noeeprom(uint8_t speed) { led_matrix_set_speed_eeprom_helper(speed, false); } void led_matrix_set_speed(uint8_t speed) { led_matrix_set_speed_eeprom_helper(speed, true); } uint8_t led_matrix_get_speed(void) { return led_matrix_eeconfig.speed; } void led_matrix_increase_speed_helper(bool write_to_eeprom) { led_matrix_set_speed_eeprom_helper(qadd8(led_matrix_eeconfig.speed, LED_MATRIX_SPD_STEP), write_to_eeprom); } void led_matrix_increase_speed_noeeprom(void) { led_matrix_increase_speed_helper(false); } void led_matrix_increase_speed(void) { led_matrix_increase_speed_helper(true); } void led_matrix_decrease_speed_helper(bool write_to_eeprom) { led_matrix_set_speed_eeprom_helper(qsub8(led_matrix_eeconfig.speed, LED_MATRIX_SPD_STEP), write_to_eeprom); } void led_matrix_decrease_speed_noeeprom(void) { led_matrix_decrease_speed_helper(false); } void led_matrix_decrease_speed(void) { led_matrix_decrease_speed_helper(true); } led_flags_t led_matrix_get_flags(void) { return led_matrix_eeconfig.flags; } void led_matrix_set_flags(led_flags_t flags) { led_matrix_eeconfig.flags = flags; }