/* Copyright 2016 Jack Humbert * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include <stdio.h> #include <string.h> //#include <math.h> #if defined(__AVR__) # include <avr/pgmspace.h> # include <avr/interrupt.h> # include <avr/io.h> #endif #include "print.h" #include "audio.h" #include "keymap.h" #include "wait.h" #include "eeconfig.h" #define CPU_PRESCALER 8 // ----------------------------------------------------------------------------- // Timer Abstractions // ----------------------------------------------------------------------------- // Currently we support timers 1 and 3 used at the sime time, channels A-C, // pins PB5, PB6, PB7, PC4, PC5, and PC6 #if defined(C6_AUDIO) # define CPIN_AUDIO # define CPIN_SET_DIRECTION DDRC |= _BV(PORTC6); # define INIT_AUDIO_COUNTER_3 TCCR3A = (0 << COM3A1) | (0 << COM3A0) | (1 << WGM31) | (0 << WGM30); # define ENABLE_AUDIO_COUNTER_3_ISR TIMSK3 |= _BV(OCIE3A) # define DISABLE_AUDIO_COUNTER_3_ISR TIMSK3 &= ~_BV(OCIE3A) # define ENABLE_AUDIO_COUNTER_3_OUTPUT TCCR3A |= _BV(COM3A1); # define DISABLE_AUDIO_COUNTER_3_OUTPUT TCCR3A &= ~(_BV(COM3A1) | _BV(COM3A0)); # define TIMER_3_PERIOD ICR3 # define TIMER_3_DUTY_CYCLE OCR3A # define TIMER3_AUDIO_vect TIMER3_COMPA_vect #endif #if defined(C5_AUDIO) # define CPIN_AUDIO # define CPIN_SET_DIRECTION DDRC |= _BV(PORTC5); # define INIT_AUDIO_COUNTER_3 TCCR3A = (0 << COM3B1) | (0 << COM3B0) | (1 << WGM31) | (0 << WGM30); # define ENABLE_AUDIO_COUNTER_3_ISR TIMSK3 |= _BV(OCIE3B) # define DISABLE_AUDIO_COUNTER_3_ISR TIMSK3 &= ~_BV(OCIE3B) # define ENABLE_AUDIO_COUNTER_3_OUTPUT TCCR3A |= _BV(COM3B1); # define DISABLE_AUDIO_COUNTER_3_OUTPUT TCCR3A &= ~(_BV(COM3B1) | _BV(COM3B0)); # define TIMER_3_PERIOD ICR3 # define TIMER_3_DUTY_CYCLE OCR3B # define TIMER3_AUDIO_vect TIMER3_COMPB_vect #endif #if defined(C4_AUDIO) # define CPIN_AUDIO # define CPIN_SET_DIRECTION DDRC |= _BV(PORTC4); # define INIT_AUDIO_COUNTER_3 TCCR3A = (0 << COM3C1) | (0 << COM3C0) | (1 << WGM31) | (0 << WGM30); # define ENABLE_AUDIO_COUNTER_3_ISR TIMSK3 |= _BV(OCIE3C) # define DISABLE_AUDIO_COUNTER_3_ISR TIMSK3 &= ~_BV(OCIE3C) # define ENABLE_AUDIO_COUNTER_3_OUTPUT TCCR3A |= _BV(COM3C1); # define DISABLE_AUDIO_COUNTER_3_OUTPUT TCCR3A &= ~(_BV(COM3C1) | _BV(COM3C0)); # define TIMER_3_PERIOD ICR3 # define TIMER_3_DUTY_CYCLE OCR3C # define TIMER3_AUDIO_vect TIMER3_COMPC_vect #endif #if defined(B5_AUDIO) # define BPIN_AUDIO # define BPIN_SET_DIRECTION DDRB |= _BV(PORTB5); # define INIT_AUDIO_COUNTER_1 TCCR1A = (0 << COM1A1) | (0 << COM1A0) | (1 << WGM11) | (0 << WGM10); # define ENABLE_AUDIO_COUNTER_1_ISR TIMSK1 |= _BV(OCIE1A) # define DISABLE_AUDIO_COUNTER_1_ISR TIMSK1 &= ~_BV(OCIE1A) # define ENABLE_AUDIO_COUNTER_1_OUTPUT TCCR1A |= _BV(COM1A1); # define DISABLE_AUDIO_COUNTER_1_OUTPUT TCCR1A &= ~(_BV(COM1A1) | _BV(COM1A0)); # define TIMER_1_PERIOD ICR1 # define TIMER_1_DUTY_CYCLE OCR1A # define TIMER1_AUDIO_vect TIMER1_COMPA_vect #endif #if defined(B6_AUDIO) # define BPIN_AUDIO # define BPIN_SET_DIRECTION DDRB |= _BV(PORTB6); # define INIT_AUDIO_COUNTER_1 TCCR1A = (0 << COM1B1) | (0 << COM1B0) | (1 << WGM11) | (0 << WGM10); # define ENABLE_AUDIO_COUNTER_1_ISR TIMSK1 |= _BV(OCIE1B) # define DISABLE_AUDIO_COUNTER_1_ISR TIMSK1 &= ~_BV(OCIE1B) # define ENABLE_AUDIO_COUNTER_1_OUTPUT TCCR1A |= _BV(COM1B1); # define DISABLE_AUDIO_COUNTER_1_OUTPUT TCCR1A &= ~(_BV(COM1B1) | _BV(COM1B0)); # define TIMER_1_PERIOD ICR1 # define TIMER_1_DUTY_CYCLE OCR1B # define TIMER1_AUDIO_vect TIMER1_COMPB_vect #endif #if defined(B7_AUDIO) # define BPIN_AUDIO # define BPIN_SET_DIRECTION DDRB |= _BV(PORTB7); # define INIT_AUDIO_COUNTER_1 TCCR1A = (0 << COM1C1) | (0 << COM1C0) | (1 << WGM11) | (0 << WGM10); # define ENABLE_AUDIO_COUNTER_1_ISR TIMSK1 |= _BV(OCIE1C) # define DISABLE_AUDIO_COUNTER_1_ISR TIMSK1 &= ~_BV(OCIE1C) # define ENABLE_AUDIO_COUNTER_1_OUTPUT TCCR1A |= _BV(COM1C1); # define DISABLE_AUDIO_COUNTER_1_OUTPUT TCCR1A &= ~(_BV(COM1C1) | _BV(COM1C0)); # define TIMER_1_PERIOD ICR1 # define TIMER_1_DUTY_CYCLE OCR1C # define TIMER1_AUDIO_vect TIMER1_COMPC_vect #endif #if !defined(BPIN_AUDIO) && !defined(CPIN_AUDIO) # error "Audio feature enabled, but no suitable pin selected - see docs/feature_audio.md under the AVR settings for available options." #endif // ----------------------------------------------------------------------------- int voices = 0; int voice_place = 0; float frequency = 0; float frequency_alt = 0; int volume = 0; long position = 0; float frequencies[8] = {0, 0, 0, 0, 0, 0, 0, 0}; int volumes[8] = {0, 0, 0, 0, 0, 0, 0, 0}; bool sliding = false; float place = 0; uint8_t* sample; uint16_t sample_length = 0; bool playing_notes = false; bool playing_note = false; float note_frequency = 0; float note_length = 0; uint8_t note_tempo = TEMPO_DEFAULT; float note_timbre = TIMBRE_DEFAULT; uint16_t note_position = 0; float (*notes_pointer)[][2]; uint16_t notes_count; bool notes_repeat; bool note_resting = false; uint16_t current_note = 0; uint8_t rest_counter = 0; #ifdef VIBRATO_ENABLE float vibrato_counter = 0; float vibrato_strength = .5; float vibrato_rate = 0.125; #endif float polyphony_rate = 0; static bool audio_initialized = false; audio_config_t audio_config; uint16_t envelope_index = 0; bool glissando = true; #ifndef STARTUP_SONG # define STARTUP_SONG SONG(STARTUP_SOUND) #endif #ifndef AUDIO_ON_SONG # define AUDIO_ON_SONG SONG(AUDIO_ON_SOUND) #endif #ifndef AUDIO_OFF_SONG # define AUDIO_OFF_SONG SONG(AUDIO_OFF_SOUND) #endif float startup_song[][2] = STARTUP_SONG; float audio_on_song[][2] = AUDIO_ON_SONG; float audio_off_song[][2] = AUDIO_OFF_SONG; void audio_init() { // Check EEPROM if (!eeconfig_is_enabled()) { eeconfig_init(); } audio_config.raw = eeconfig_read_audio(); if (!audio_initialized) { // Set audio ports as output #ifdef CPIN_AUDIO CPIN_SET_DIRECTION DISABLE_AUDIO_COUNTER_3_ISR; #endif #ifdef BPIN_AUDIO BPIN_SET_DIRECTION DISABLE_AUDIO_COUNTER_1_ISR; #endif // TCCR3A / TCCR3B: Timer/Counter #3 Control Registers TCCR3A/TCCR3B, TCCR1A/TCCR1B // Compare Output Mode (COM3An and COM1An) = 0b00 = Normal port operation // OC3A -- PC6 // OC3B -- PC5 // OC3C -- PC4 // OC1A -- PB5 // OC1B -- PB6 // OC1C -- PB7 // Waveform Generation Mode (WGM3n) = 0b1110 = Fast PWM Mode 14. Period = ICR3, Duty Cycle OCR3A) // OCR3A - PC6 // OCR3B - PC5 // OCR3C - PC4 // OCR1A - PB5 // OCR1B - PB6 // OCR1C - PB7 // Clock Select (CS3n) = 0b010 = Clock / 8 #ifdef CPIN_AUDIO INIT_AUDIO_COUNTER_3 TCCR3B = (1 << WGM33) | (1 << WGM32) | (0 << CS32) | (1 << CS31) | (0 << CS30); TIMER_3_PERIOD = (uint16_t)(((float)F_CPU) / (440 * CPU_PRESCALER)); TIMER_3_DUTY_CYCLE = (uint16_t)((((float)F_CPU) / (440 * CPU_PRESCALER)) * note_timbre); #endif #ifdef BPIN_AUDIO INIT_AUDIO_COUNTER_1 TCCR1B = (1 << WGM13) | (1 << WGM12) | (0 << CS12) | (1 << CS11) | (0 << CS10); TIMER_1_PERIOD = (uint16_t)(((float)F_CPU) / (440 * CPU_PRESCALER)); TIMER_1_DUTY_CYCLE = (uint16_t)((((float)F_CPU) / (440 * CPU_PRESCALER)) * note_timbre); #endif audio_initialized = true; } if (audio_config.enable) { PLAY_SONG(startup_song); } } void stop_all_notes() { dprintf("audio stop all notes"); if (!audio_initialized) { audio_init(); } voices = 0; #ifdef CPIN_AUDIO DISABLE_AUDIO_COUNTER_3_ISR; DISABLE_AUDIO_COUNTER_3_OUTPUT; #endif #ifdef BPIN_AUDIO DISABLE_AUDIO_COUNTER_1_ISR; DISABLE_AUDIO_COUNTER_1_OUTPUT; #endif playing_notes = false; playing_note = false; frequency = 0; frequency_alt = 0; volume = 0; for (uint8_t i = 0; i < 8; i++) { frequencies[i] = 0; volumes[i] = 0; } } void stop_note(float freq) { dprintf("audio stop note freq=%d", (int)freq); if (playing_note) { if (!audio_initialized) { audio_init(); } for (int i = 7; i >= 0; i--) { if (frequencies[i] == freq) { frequencies[i] = 0; volumes[i] = 0; for (int j = i; (j < 7); j++) { frequencies[j] = frequencies[j + 1]; frequencies[j + 1] = 0; volumes[j] = volumes[j + 1]; volumes[j + 1] = 0; } break; } } voices--; if (voices < 0) voices = 0; if (voice_place >= voices) { voice_place = 0; } if (voices == 0) { #ifdef CPIN_AUDIO DISABLE_AUDIO_COUNTER_3_ISR; DISABLE_AUDIO_COUNTER_3_OUTPUT; #endif #ifdef BPIN_AUDIO DISABLE_AUDIO_COUNTER_1_ISR; DISABLE_AUDIO_COUNTER_1_OUTPUT; #endif frequency = 0; frequency_alt = 0; volume = 0; playing_note = false; } } } #ifdef VIBRATO_ENABLE float mod(float a, int b) { float r = fmod(a, b); return r < 0 ? r + b : r; } float vibrato(float average_freq) { # ifdef VIBRATO_STRENGTH_ENABLE float vibrated_freq = average_freq * pow(vibrato_lut[(int)vibrato_counter], vibrato_strength); # else float vibrated_freq = average_freq * vibrato_lut[(int)vibrato_counter]; # endif vibrato_counter = mod((vibrato_counter + vibrato_rate * (1.0 + 440.0 / average_freq)), VIBRATO_LUT_LENGTH); return vibrated_freq; } #endif #ifdef CPIN_AUDIO ISR(TIMER3_AUDIO_vect) { float freq; if (playing_note) { if (voices > 0) { # ifdef BPIN_AUDIO float freq_alt = 0; if (voices > 1) { if (polyphony_rate == 0) { if (glissando) { if (frequency_alt != 0 && frequency_alt < frequencies[voices - 2] && frequency_alt < frequencies[voices - 2] * pow(2, -440 / frequencies[voices - 2] / 12 / 2)) { frequency_alt = frequency_alt * pow(2, 440 / frequency_alt / 12 / 2); } else if (frequency_alt != 0 && frequency_alt > frequencies[voices - 2] && frequency_alt > frequencies[voices - 2] * pow(2, 440 / frequencies[voices - 2] / 12 / 2)) { frequency_alt = frequency_alt * pow(2, -440 / frequency_alt / 12 / 2); } else { frequency_alt = frequencies[voices - 2]; } } else { frequency_alt = frequencies[voices - 2]; } # ifdef VIBRATO_ENABLE if (vibrato_strength > 0) { freq_alt = vibrato(frequency_alt); } else { freq_alt = frequency_alt; } # else freq_alt = frequency_alt; # endif } if (envelope_index < 65535) { envelope_index++; } freq_alt = voice_envelope(freq_alt); if (freq_alt < 30.517578125) { freq_alt = 30.52; } TIMER_1_PERIOD = (uint16_t)(((float)F_CPU) / (freq_alt * CPU_PRESCALER)); TIMER_1_DUTY_CYCLE = (uint16_t)((((float)F_CPU) / (freq_alt * CPU_PRESCALER)) * note_timbre); } # endif if (polyphony_rate > 0) { if (voices > 1) { voice_place %= voices; if (place++ > (frequencies[voice_place] / polyphony_rate / CPU_PRESCALER)) { voice_place = (voice_place + 1) % voices; place = 0.0; } } # ifdef VIBRATO_ENABLE if (vibrato_strength > 0) { freq = vibrato(frequencies[voice_place]); } else { freq = frequencies[voice_place]; } # else freq = frequencies[voice_place]; # endif } else { if (glissando) { if (frequency != 0 && frequency < frequencies[voices - 1] && frequency < frequencies[voices - 1] * pow(2, -440 / frequencies[voices - 1] / 12 / 2)) { frequency = frequency * pow(2, 440 / frequency / 12 / 2); } else if (frequency != 0 && frequency > frequencies[voices - 1] && frequency > frequencies[voices - 1] * pow(2, 440 / frequencies[voices - 1] / 12 / 2)) { frequency = frequency * pow(2, -440 / frequency / 12 / 2); } else { frequency = frequencies[voices - 1]; } } else { frequency = frequencies[voices - 1]; } # ifdef VIBRATO_ENABLE if (vibrato_strength > 0) { freq = vibrato(frequency); } else { freq = frequency; } # else freq = frequency; # endif } if (envelope_index < 65535) { envelope_index++; } freq = voice_envelope(freq); if (freq < 30.517578125) { freq = 30.52; } TIMER_3_PERIOD = (uint16_t)(((float)F_CPU) / (freq * CPU_PRESCALER)); TIMER_3_DUTY_CYCLE = (uint16_t)((((float)F_CPU) / (freq * CPU_PRESCALER)) * note_timbre); } } if (playing_notes) { if (note_frequency > 0) { # ifdef VIBRATO_ENABLE if (vibrato_strength > 0) { freq = vibrato(note_frequency); } else { freq = note_frequency; } # else freq = note_frequency; # endif if (envelope_index < 65535) { envelope_index++; } freq = voice_envelope(freq); TIMER_3_PERIOD = (uint16_t)(((float)F_CPU) / (freq * CPU_PRESCALER)); TIMER_3_DUTY_CYCLE = (uint16_t)((((float)F_CPU) / (freq * CPU_PRESCALER)) * note_timbre); } else { TIMER_3_PERIOD = 0; TIMER_3_DUTY_CYCLE = 0; } note_position++; bool end_of_note = false; if (TIMER_3_PERIOD > 0) { if (!note_resting) end_of_note = (note_position >= (note_length / TIMER_3_PERIOD * 0xFFFF - 1)); else end_of_note = (note_position >= (note_length)); } else { end_of_note = (note_position >= (note_length)); } if (end_of_note) { current_note++; if (current_note >= notes_count) { if (notes_repeat) { current_note = 0; } else { DISABLE_AUDIO_COUNTER_3_ISR; DISABLE_AUDIO_COUNTER_3_OUTPUT; playing_notes = false; return; } } if (!note_resting) { note_resting = true; current_note--; if ((*notes_pointer)[current_note][0] == (*notes_pointer)[current_note + 1][0]) { note_frequency = 0; note_length = 1; } else { note_frequency = (*notes_pointer)[current_note][0]; note_length = 1; } } else { note_resting = false; envelope_index = 0; note_frequency = (*notes_pointer)[current_note][0]; note_length = ((*notes_pointer)[current_note][1] / 4) * (((float)note_tempo) / 100); } note_position = 0; } } if (!audio_config.enable) { playing_notes = false; playing_note = false; } } #endif #ifdef BPIN_AUDIO ISR(TIMER1_AUDIO_vect) { # if defined(BPIN_AUDIO) && !defined(CPIN_AUDIO) float freq = 0; if (playing_note) { if (voices > 0) { if (polyphony_rate > 0) { if (voices > 1) { voice_place %= voices; if (place++ > (frequencies[voice_place] / polyphony_rate / CPU_PRESCALER)) { voice_place = (voice_place + 1) % voices; place = 0.0; } } # ifdef VIBRATO_ENABLE if (vibrato_strength > 0) { freq = vibrato(frequencies[voice_place]); } else { freq = frequencies[voice_place]; } # else freq = frequencies[voice_place]; # endif } else { if (glissando) { if (frequency != 0 && frequency < frequencies[voices - 1] && frequency < frequencies[voices - 1] * pow(2, -440 / frequencies[voices - 1] / 12 / 2)) { frequency = frequency * pow(2, 440 / frequency / 12 / 2); } else if (frequency != 0 && frequency > frequencies[voices - 1] && frequency > frequencies[voices - 1] * pow(2, 440 / frequencies[voices - 1] / 12 / 2)) { frequency = frequency * pow(2, -440 / frequency / 12 / 2); } else { frequency = frequencies[voices - 1]; } } else { frequency = frequencies[voices - 1]; } # ifdef VIBRATO_ENABLE if (vibrato_strength > 0) { freq = vibrato(frequency); } else { freq = frequency; } # else freq = frequency; # endif } if (envelope_index < 65535) { envelope_index++; } freq = voice_envelope(freq); if (freq < 30.517578125) { freq = 30.52; } TIMER_1_PERIOD = (uint16_t)(((float)F_CPU) / (freq * CPU_PRESCALER)); TIMER_1_DUTY_CYCLE = (uint16_t)((((float)F_CPU) / (freq * CPU_PRESCALER)) * note_timbre); } } if (playing_notes) { if (note_frequency > 0) { # ifdef VIBRATO_ENABLE if (vibrato_strength > 0) { freq = vibrato(note_frequency); } else { freq = note_frequency; } # else freq = note_frequency; # endif if (envelope_index < 65535) { envelope_index++; } freq = voice_envelope(freq); TIMER_1_PERIOD = (uint16_t)(((float)F_CPU) / (freq * CPU_PRESCALER)); TIMER_1_DUTY_CYCLE = (uint16_t)((((float)F_CPU) / (freq * CPU_PRESCALER)) * note_timbre); } else { TIMER_1_PERIOD = 0; TIMER_1_DUTY_CYCLE = 0; } note_position++; bool end_of_note = false; if (TIMER_1_PERIOD > 0) { if (!note_resting) end_of_note = (note_position >= (note_length / TIMER_1_PERIOD * 0xFFFF - 1)); else end_of_note = (note_position >= (note_length)); } else { end_of_note = (note_position >= (note_length)); } if (end_of_note) { current_note++; if (current_note >= notes_count) { if (notes_repeat) { current_note = 0; } else { DISABLE_AUDIO_COUNTER_1_ISR; DISABLE_AUDIO_COUNTER_1_OUTPUT; playing_notes = false; return; } } if (!note_resting) { note_resting = true; current_note--; if ((*notes_pointer)[current_note][0] == (*notes_pointer)[current_note + 1][0]) { note_frequency = 0; note_length = 1; } else { note_frequency = (*notes_pointer)[current_note][0]; note_length = 1; } } else { note_resting = false; envelope_index = 0; note_frequency = (*notes_pointer)[current_note][0]; note_length = ((*notes_pointer)[current_note][1] / 4) * (((float)note_tempo) / 100); } note_position = 0; } } if (!audio_config.enable) { playing_notes = false; playing_note = false; } # endif } #endif void play_note(float freq, int vol) { dprintf("audio play note freq=%d vol=%d", (int)freq, vol); if (!audio_initialized) { audio_init(); } if (audio_config.enable && voices < 8) { #ifdef CPIN_AUDIO DISABLE_AUDIO_COUNTER_3_ISR; #endif #ifdef BPIN_AUDIO DISABLE_AUDIO_COUNTER_1_ISR; #endif // Cancel notes if notes are playing if (playing_notes) stop_all_notes(); playing_note = true; envelope_index = 0; if (freq > 0) { frequencies[voices] = freq; volumes[voices] = vol; voices++; } #ifdef CPIN_AUDIO ENABLE_AUDIO_COUNTER_3_ISR; ENABLE_AUDIO_COUNTER_3_OUTPUT; #endif #ifdef BPIN_AUDIO # ifdef CPIN_AUDIO if (voices > 1) { ENABLE_AUDIO_COUNTER_1_ISR; ENABLE_AUDIO_COUNTER_1_OUTPUT; } # else ENABLE_AUDIO_COUNTER_1_ISR; ENABLE_AUDIO_COUNTER_1_OUTPUT; # endif #endif } } void play_notes(float (*np)[][2], uint16_t n_count, bool n_repeat) { if (!audio_initialized) { audio_init(); } if (audio_config.enable) { #ifdef CPIN_AUDIO DISABLE_AUDIO_COUNTER_3_ISR; #endif #ifdef BPIN_AUDIO DISABLE_AUDIO_COUNTER_1_ISR; #endif // Cancel note if a note is playing if (playing_note) stop_all_notes(); playing_notes = true; notes_pointer = np; notes_count = n_count; notes_repeat = n_repeat; place = 0; current_note = 0; note_frequency = (*notes_pointer)[current_note][0]; note_length = ((*notes_pointer)[current_note][1] / 4) * (((float)note_tempo) / 100); note_position = 0; #ifdef CPIN_AUDIO ENABLE_AUDIO_COUNTER_3_ISR; ENABLE_AUDIO_COUNTER_3_OUTPUT; #endif #ifdef BPIN_AUDIO # ifndef CPIN_AUDIO ENABLE_AUDIO_COUNTER_1_ISR; ENABLE_AUDIO_COUNTER_1_OUTPUT; # endif #endif } } bool is_playing_notes(void) { return playing_notes; } bool is_audio_on(void) { return (audio_config.enable != 0); } void audio_toggle(void) { audio_config.enable ^= 1; eeconfig_update_audio(audio_config.raw); if (audio_config.enable) audio_on_user(); } void audio_on(void) { audio_config.enable = 1; eeconfig_update_audio(audio_config.raw); audio_on_user(); PLAY_SONG(audio_on_song); } void audio_off(void) { PLAY_SONG(audio_off_song); wait_ms(100); stop_all_notes(); audio_config.enable = 0; eeconfig_update_audio(audio_config.raw); } #ifdef VIBRATO_ENABLE // Vibrato rate functions void set_vibrato_rate(float rate) { vibrato_rate = rate; } void increase_vibrato_rate(float change) { vibrato_rate *= change; } void decrease_vibrato_rate(float change) { vibrato_rate /= change; } # ifdef VIBRATO_STRENGTH_ENABLE void set_vibrato_strength(float strength) { vibrato_strength = strength; } void increase_vibrato_strength(float change) { vibrato_strength *= change; } void decrease_vibrato_strength(float change) { vibrato_strength /= change; } # endif /* VIBRATO_STRENGTH_ENABLE */ #endif /* VIBRATO_ENABLE */ // Polyphony functions void set_polyphony_rate(float rate) { polyphony_rate = rate; } void enable_polyphony() { polyphony_rate = 5; } void disable_polyphony() { polyphony_rate = 0; } void increase_polyphony_rate(float change) { polyphony_rate *= change; } void decrease_polyphony_rate(float change) { polyphony_rate /= change; } // Timbre function void set_timbre(float timbre) { note_timbre = timbre; } // Tempo functions void set_tempo(uint8_t tempo) { note_tempo = tempo; } void decrease_tempo(uint8_t tempo_change) { note_tempo += tempo_change; } void increase_tempo(uint8_t tempo_change) { if (note_tempo - tempo_change < 10) { note_tempo = 10; } else { note_tempo -= tempo_change; } }