#include <stdint.h> #include <stdbool.h> #include <avr/io.h> #include "wait.h" #include "action_layer.h" #include "print.h" #include "debug.h" #include "util.h" #include "matrix.h" #include "ergodone.h" #include "expander.h" #ifdef DEBUG_MATRIX_SCAN_RATE #include "timer.h" #endif /* * This constant define not debouncing time in msecs, but amount of matrix * scan loops which should be made to get stable debounced results. * * On Ergodox matrix scan rate is relatively low, because of slow I2C. * Now it's only 317 scans/second, or about 3.15 msec/scan. * According to Cherry specs, debouncing time is 5 msec. * * And so, there is no sense to have DEBOUNCE higher than 2. */ #ifndef DEBOUNCE # define DEBOUNCE 5 #endif /* matrix state(1:on, 0:off) */ static matrix_row_t matrix[MATRIX_ROWS]; // Debouncing: store for each key the number of scans until it's eligible to // change. When scanning the matrix, ignore any changes in keys that have // already changed in the last DEBOUNCE scans. static uint8_t debounce_matrix[MATRIX_ROWS * MATRIX_COLS]; static matrix_row_t read_cols(uint8_t row); static void init_cols(void); static void unselect_rows(void); static void select_row(uint8_t row); #ifdef DEBUG_MATRIX_SCAN_RATE uint32_t matrix_timer; uint32_t matrix_scan_count; #endif __attribute__ ((weak)) void matrix_init_user(void) {} __attribute__ ((weak)) void matrix_scan_user(void) {} __attribute__ ((weak)) void matrix_init_kb(void) { matrix_init_user(); } __attribute__ ((weak)) void matrix_scan_kb(void) { matrix_scan_user(); } inline uint8_t matrix_rows(void) { return MATRIX_ROWS; } inline uint8_t matrix_cols(void) { return MATRIX_COLS; } void matrix_init(void) { // disable JTAG MCUCR = (1<<JTD); MCUCR = (1<<JTD); unselect_rows(); init_cols(); // initialize matrix state: all keys off for (uint8_t i=0; i < MATRIX_ROWS; i++) { matrix[i] = 0; for (uint8_t j=0; j < MATRIX_COLS; ++j) { debounce_matrix[i * MATRIX_COLS + j] = 0; } } #ifdef DEBUG_MATRIX_SCAN_RATE matrix_timer = timer_read32(); matrix_scan_count = 0; #endif matrix_init_quantum(); } void matrix_power_up(void) { unselect_rows(); init_cols(); // initialize matrix state: all keys off for (uint8_t i=0; i < MATRIX_ROWS; i++) { matrix[i] = 0; } #ifdef DEBUG_MATRIX_SCAN_RATE matrix_timer = timer_read32(); matrix_scan_count = 0; #endif } // Returns a matrix_row_t whose bits are set if the corresponding key should be // eligible to change in this scan. matrix_row_t debounce_mask(uint8_t row) { matrix_row_t result = 0; for (uint8_t j=0; j < MATRIX_COLS; ++j) { if (debounce_matrix[row * MATRIX_COLS + j]) { --debounce_matrix[row * MATRIX_COLS + j]; } else { result |= (1 << j); } } return result; } // Report changed keys in the given row. Resets the debounce countdowns // corresponding to each set bit in 'change' to DEBOUNCE. void debounce_report(matrix_row_t change, uint8_t row) { for (uint8_t i = 0; i < MATRIX_COLS; ++i) { if (change & (1 << i)) { debounce_matrix[row * MATRIX_COLS + i] = DEBOUNCE; } } } uint8_t matrix_scan(void) { expander_scan(); #ifdef DEBUG_MATRIX_SCAN_RATE matrix_scan_count++; uint32_t timer_now = timer_read32(); if (TIMER_DIFF_32(timer_now, matrix_timer)>1000) { print("matrix scan frequency: "); pdec(matrix_scan_count); print("\n"); matrix_print(); matrix_timer = timer_now; matrix_scan_count = 0; } #endif for (uint8_t i = 0; i < MATRIX_ROWS; i++) { select_row(i); wait_us(30); // without this wait read unstable value. matrix_row_t mask = debounce_mask(i); matrix_row_t cols = (read_cols(i) & mask) | (matrix[i] & ~mask); debounce_report(cols ^ matrix[i], i); matrix[i] = cols; unselect_rows(); } matrix_scan_quantum(); return 1; } inline bool matrix_is_on(uint8_t row, uint8_t col) { return (matrix[row] & ((matrix_row_t)1<<col)); } inline matrix_row_t matrix_get_row(uint8_t row) { return matrix[row]; } void matrix_print(void) { print("\nr/c 0123456789ABCDEF\n"); for (uint8_t row = 0; row < MATRIX_ROWS; row++) { phex(row); print(": "); pbin_reverse16(matrix_get_row(row)); print("\n"); } } uint8_t matrix_key_count(void) { uint8_t count = 0; for (uint8_t i = 0; i < MATRIX_ROWS; i++) { count += bitpop16(matrix[i]); } return count; } /* Column pin configuration * * Pro Micro: 6 5 4 3 2 1 0 * PD3 PD2 PD4 PC6 PD7 PE6 PB4 * * Expander: 13 12 11 10 9 8 7 */ static void init_cols(void) { // Pro Micro DDRE &= ~(1<<PE6); PORTE |= (1<<PE6); DDRD &= ~(1<<PD2 | 1<<PD3 | 1<<PD4 | 1<<PD7); PORTD |= (1<<PD2 | 1<<PD3 | 1<<PD4 | 1<<PD7); DDRC &= ~(1<<PC6); PORTC |= (1<<PC6); DDRB &= ~(1<<PB4); PORTB |= (1<<PB4); // MCP23017 expander_init(); } static matrix_row_t read_cols(uint8_t row) { return expander_read_row() | (PIND&(1<<PD3) ? 0 : (1<<6)) | (PIND&(1<<PD2) ? 0 : (1<<5)) | (PIND&(1<<PD4) ? 0 : (1<<4)) | (PINC&(1<<PC6) ? 0 : (1<<3)) | (PIND&(1<<PD7) ? 0 : (1<<2)) | (PINE&(1<<PE6) ? 0 : (1<<1)) | (PINB&(1<<PB4) ? 0 : (1<<0)) ; } /* Row pin configuration * * Pro Micro: 0 1 2 3 4 5 * F4 F5 F6 F7 B1 B2 * * Expander: 0 1 2 3 4 5 */ static void unselect_rows(void) { // Pro Micro DDRF &= ~(1<<PF4 | 1<<PF5 | 1<<PF6 | 1<<PF7); PORTF &= ~(1<<PF4 | 1<<PF5 | 1<<PF6 | 1<<PF7); DDRB &= ~(1<<PB1 | 1<<PB2); PORTB &= ~(1<<PB1 | 1<<PB2); // Expander expander_unselect_rows(); } static void select_row(uint8_t row) { // Pro Micro switch (row) { case 0: DDRF |= (1<<PF4); PORTF &= ~(1<<PF4); break; case 1: DDRF |= (1<<PF5); PORTF &= ~(1<<PF5); break; case 2: DDRF |= (1<<PF6); PORTF &= ~(1<<PF6); break; case 3: DDRF |= (1<<PF7); PORTF &= ~(1<<PF7); break; case 4: DDRB |= (1<<PB1); PORTB &= ~(1<<PB1); break; case 5: DDRB |= (1<<PB2); PORTB &= ~(1<<PB2); break; } expander_select_row(row); }