/*
Copyright 2012 Jun Wako
Copyright 2014 Jack Humbert

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdint.h>
#include <stdbool.h>
#if defined(__AVR__)
#include <avr/io.h>
#include <avr/wdt.h>
#include <avr/interrupt.h>
#include <util/delay.h>
#endif
#include "wait.h"
#include "print.h"
#include "debug.h"
#include "util.h"
#include "matrix.h"
#include "timer.h"
#include "i2c_slave.h"
#include "lufa.h"
#include "quantum.h"

#define SLAVE_I2C_ADDRESS 0x32

/* Set 0 if debouncing isn't needed */

#ifndef DEBOUNCE
#   define DEBOUNCE 5
#endif

#if (DEBOUNCE > 0)
    static uint16_t debouncing_time;
    static bool debouncing = false;
#endif

#if (MATRIX_COLS <= 8)
#    define print_matrix_header()  print("\nr/c 01234567\n")
#    define print_matrix_row(row)  print_bin_reverse8(matrix_get_row(row))
#    define ROW_SHIFTER ((uint8_t)1)
#elif (MATRIX_COLS <= 16)
#    define print_matrix_header()  print("\nr/c 0123456789ABCDEF\n")
#    define print_matrix_row(row)  print_bin_reverse16(matrix_get_row(row))
#    define ROW_SHIFTER ((uint16_t)1)
#elif (MATRIX_COLS <= 32)
#    define print_matrix_header()  print("\nr/c 0123456789ABCDEF0123456789ABCDEF\n")
#    define print_matrix_row(row)  print_bin_reverse32(matrix_get_row(row))
#    define ROW_SHIFTER  ((uint32_t)1)
#endif

#ifdef MATRIX_MASKED
    extern const matrix_row_t matrix_mask[];
#endif

#if (DIODE_DIRECTION == ROW2COL) || (DIODE_DIRECTION == COL2ROW)
static const uint8_t row_pins[MATRIX_ROWS] = MATRIX_ROW_PINS;
static const uint8_t col_pins[MATRIX_COLS] = MATRIX_COL_PINS;
#endif

/* matrix state(1:on, 0:off) */
static matrix_row_t matrix[MATRIX_ROWS];

static matrix_row_t matrix_debouncing[MATRIX_ROWS];


#if (DIODE_DIRECTION == COL2ROW)
    static void init_cols(void);
    static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row);
    static void unselect_rows(void);
    static void select_row(uint8_t row);
    static void unselect_row(uint8_t row);
#elif (DIODE_DIRECTION == ROW2COL)
    static void init_rows(void);
    static bool read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col);
    static void unselect_cols(void);
    static void unselect_col(uint8_t col);
    static void select_col(uint8_t col);
#endif

__attribute__ ((weak))
void matrix_init_kb(void) {
    matrix_init_user();
}

__attribute__ ((weak))
void matrix_scan_kb(void) {
    matrix_scan_user();
}

__attribute__ ((weak))
void matrix_init_user(void) {
}

__attribute__ ((weak))
void matrix_scan_user(void) {
}

inline
uint8_t matrix_rows(void) {
    return MATRIX_ROWS;
}

inline
uint8_t matrix_cols(void) {
    return MATRIX_COLS;
}

void matrix_init(void) {

    // initialize row and col
#if (DIODE_DIRECTION == COL2ROW)
    unselect_rows();
    init_cols();
#elif (DIODE_DIRECTION == ROW2COL)
    unselect_cols();
    init_rows();
#endif

    // initialize matrix state: all keys off
    for (uint8_t i=0; i < MATRIX_ROWS; i++) {
        matrix[i] = 0;
        matrix_debouncing[i] = 0;
    }

    matrix_init_kb();
}

uint8_t matrix_scan(void)
{
#if (DIODE_DIRECTION == COL2ROW)

    // Set row, read cols
    for (uint8_t current_row = 0; current_row < MATRIX_ROWS; current_row++) {
#       if (DEBOUNCE > 0)
            bool matrix_changed = read_cols_on_row(matrix_debouncing, current_row);

            if (matrix_changed) {
                debouncing = true;
                debouncing_time = timer_read();
            }

#       else
            read_cols_on_row(matrix, current_row);
#       endif

    }

#elif (DIODE_DIRECTION == ROW2COL)

    // Set col, read rows
    for (uint8_t current_col = 0; current_col < MATRIX_COLS; current_col++) {
#       if (DEBOUNCE > 0)
            bool matrix_changed = read_rows_on_col(matrix_debouncing, current_col);
            if (matrix_changed) {
                debouncing = true;
                debouncing_time = timer_read();
            }
#       else
             read_rows_on_col(matrix, current_col);
#       endif

    }

#endif

#   if (DEBOUNCE > 0)
        if (debouncing && (timer_elapsed(debouncing_time) > DEBOUNCE)) {
            for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
                matrix[i] = matrix_debouncing[i];
            }
            debouncing = false;
        }
#   endif

    i2c_slave_reg[1] = 0x55;
    for (uint8_t i = 0; i < MATRIX_ROWS; i++){
        i2c_slave_reg[i+2] = matrix[i]; //send matrix over i2c
    }

    matrix_scan_kb();
    return 1;
}

inline
bool matrix_is_on(uint8_t row, uint8_t col)
{
    return (matrix[row] & ((matrix_row_t)1<<col));
}

inline
matrix_row_t matrix_get_row(uint8_t row)
{
    // Matrix mask lets you disable switches in the returned matrix data. For example, if you have a
    // switch blocker installed and the switch is always pressed.
#ifdef MATRIX_MASKED
    return matrix[row] & matrix_mask[row];
#else
    return matrix[row];
#endif
}

void matrix_print(void)
{
    print_matrix_header();

    for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
        print_hex8(row); print(": ");
        print_matrix_row(row);
        print("\n");
    }
}

#if (DIODE_DIRECTION == COL2ROW)

static void init_cols(void)
{
    for(uint8_t x = 0; x < MATRIX_COLS; x++) {
        uint8_t pin = col_pins[x];
        _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
        _SFR_IO8((pin >> 4) + 2) |=  _BV(pin & 0xF); // HI
    }
}

static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row)
{
    // Store last value of row prior to reading
    matrix_row_t last_row_value = current_matrix[current_row];

    // Clear data in matrix row
    current_matrix[current_row] = 0;

    // Select row and wait for row selecton to stabilize
    select_row(current_row);
    wait_us(30);

    // For each col...
    for(uint8_t col_index = 0; col_index < MATRIX_COLS; col_index++) {

        // Select the col pin to read (active low)
        uint8_t pin = col_pins[col_index];
        uint8_t pin_state = (_SFR_IO8(pin >> 4) & _BV(pin & 0xF));

        // Populate the matrix row with the state of the col pin
        current_matrix[current_row] |=  pin_state ? 0 : (ROW_SHIFTER << col_index);
    }

    // Unselect row
    unselect_row(current_row);

    return (last_row_value != current_matrix[current_row]);
}

static void select_row(uint8_t row)
{
    uint8_t pin = row_pins[row];
    _SFR_IO8((pin >> 4) + 1) |=  _BV(pin & 0xF); // OUT
    _SFR_IO8((pin >> 4) + 2) &= ~_BV(pin & 0xF); // LOW
}

static void unselect_row(uint8_t row)
{
    uint8_t pin = row_pins[row];
    _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
    _SFR_IO8((pin >> 4) + 2) |=  _BV(pin & 0xF); // HI
}

static void unselect_rows(void)
{
    for(uint8_t x = 0; x < MATRIX_ROWS; x++) {
        uint8_t pin = row_pins[x];
        _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
        _SFR_IO8((pin >> 4) + 2) |=  _BV(pin & 0xF); // HI
    }
}

#elif (DIODE_DIRECTION == ROW2COL)

static void init_rows(void)
{
    for(uint8_t x = 0; x < MATRIX_ROWS; x++) {
        uint8_t pin = row_pins[x];
        _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
        _SFR_IO8((pin >> 4) + 2) |=  _BV(pin & 0xF); // HI
    }
}

static bool read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col)
{
    bool matrix_changed = false;

    // Select col and wait for col selecton to stabilize
    select_col(current_col);
    wait_us(30);

    // For each row...
    for(uint8_t row_index = 0; row_index < MATRIX_ROWS; row_index++)
    {

        // Store last value of row prior to reading
        matrix_row_t last_row_value = current_matrix[row_index];

        // Check row pin state
        if ((_SFR_IO8(row_pins[row_index] >> 4) & _BV(row_pins[row_index] & 0xF)) == 0)
        {
            // Pin LO, set col bit
            current_matrix[row_index] |= (ROW_SHIFTER << current_col);
        }
        else
        {
            // Pin HI, clear col bit
            current_matrix[row_index] &= ~(ROW_SHIFTER << current_col);
        }

        // Determine if the matrix changed state
        if ((last_row_value != current_matrix[row_index]) && !(matrix_changed))
        {
            matrix_changed = true;
        }
    }

    // Unselect col
    unselect_col(current_col);

    return matrix_changed;
}

static void select_col(uint8_t col)
{
    uint8_t pin = col_pins[col];
    _SFR_IO8((pin >> 4) + 1) |=  _BV(pin & 0xF); // OUT
    _SFR_IO8((pin >> 4) + 2) &= ~_BV(pin & 0xF); // LOW
}

static void unselect_col(uint8_t col)
{
    uint8_t pin = col_pins[col];
    _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
    _SFR_IO8((pin >> 4) + 2) |=  _BV(pin & 0xF); // HI
}

static void unselect_cols(void)
{
    for(uint8_t x = 0; x < MATRIX_COLS; x++) {
        uint8_t pin = col_pins[x];
        _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
        _SFR_IO8((pin >> 4) + 2) |=  _BV(pin & 0xF); // HI
    }
}

#endif

//this replases tmk code
void matrix_setup(void){
    i2c_slave_init(SLAVE_I2C_ADDRESS); //setup address of slave i2c
    sei(); //enable interupts
}