/* Copyright 2020 Alexander Tulloh * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include "spi_master.h" #include "adns9800_srom_A6.h" #include "adns9800.h" #include "wait.h" // registers // clang-format off #define REG_Product_ID 0x00 #define REG_Revision_ID 0x01 #define REG_Motion 0x02 #define REG_Delta_X_L 0x03 #define REG_Delta_X_H 0x04 #define REG_Delta_Y_L 0x05 #define REG_Delta_Y_H 0x06 #define REG_SQUAL 0x07 #define REG_Pixel_Sum 0x08 #define REG_Maximum_Pixel 0x09 #define REG_Minimum_Pixel 0x0a #define REG_Shutter_Lower 0x0b #define REG_Shutter_Upper 0x0c #define REG_Frame_Period_Lower 0x0d #define REG_Frame_Period_Upper 0x0e #define REG_Configuration_I 0x0f #define REG_Configuration_II 0x10 #define REG_Frame_Capture 0x12 #define REG_SROM_Enable 0x13 #define REG_Run_Downshift 0x14 #define REG_Rest1_Rate 0x15 #define REG_Rest1_Downshift 0x16 #define REG_Rest2_Rate 0x17 #define REG_Rest2_Downshift 0x18 #define REG_Rest3_Rate 0x19 #define REG_Frame_Period_Max_Bound_Lower 0x1a #define REG_Frame_Period_Max_Bound_Upper 0x1b #define REG_Frame_Period_Min_Bound_Lower 0x1c #define REG_Frame_Period_Min_Bound_Upper 0x1d #define REG_Shutter_Max_Bound_Lower 0x1e #define REG_Shutter_Max_Bound_Upper 0x1f #define REG_LASER_CTRL0 0x20 #define REG_Observation 0x24 #define REG_Data_Out_Lower 0x25 #define REG_Data_Out_Upper 0x26 #define REG_SROM_ID 0x2a #define REG_Lift_Detection_Thr 0x2e #define REG_Configuration_V 0x2f #define REG_Configuration_IV 0x39 #define REG_Power_Up_Reset 0x3a #define REG_Shutdown 0x3b #define REG_Inverse_Product_ID 0x3f #define REG_Motion_Burst 0x50 #define REG_SROM_Load_Burst 0x62 #define REG_Pixel_Burst 0x64 #define MIN_CPI 200 #define MAX_CPI 8200 #define CPI_STEP 200 #define CLAMP_CPI(value) value<MIN_CPI ? MIN_CPI : value> MAX_CPI ? MAX_CPI : value #define US_BETWEEN_WRITES 120 #define US_BETWEEN_READS 20 #define US_BEFORE_MOTION 100 #define MSB1 0x80 // clang-format on void adns9800_spi_start(void) { spi_start(ADNS9800_CS_PIN, false, ADNS9800_SPI_MODE, ADNS9800_SPI_DIVISOR); } void adns9800_write(uint8_t reg_addr, uint8_t data) { adns9800_spi_start(); spi_write(reg_addr | MSB1); spi_write(data); spi_stop(); wait_us(US_BETWEEN_WRITES); } uint8_t adns9800_read(uint8_t reg_addr) { adns9800_spi_start(); spi_write(reg_addr & 0x7f); uint8_t data = spi_read(); spi_stop(); wait_us(US_BETWEEN_READS); return data; } void adns9800_init() { setPinOutput(ADNS9800_CS_PIN); spi_init(); // reboot adns9800_write(REG_Power_Up_Reset, 0x5a); wait_ms(50); // read registers and discard adns9800_read(REG_Motion); adns9800_read(REG_Delta_X_L); adns9800_read(REG_Delta_X_H); adns9800_read(REG_Delta_Y_L); adns9800_read(REG_Delta_Y_H); // upload firmware // 3k firmware mode adns9800_write(REG_Configuration_IV, 0x02); // enable initialisation adns9800_write(REG_SROM_Enable, 0x1d); // wait a frame wait_ms(10); // start SROM download adns9800_write(REG_SROM_Enable, 0x18); // write the SROM file adns9800_spi_start(); spi_write(REG_SROM_Load_Burst | 0x80); wait_us(15); // send all bytes of the firmware unsigned char c; for (int i = 0; i < FIRMWARE_LENGTH; i++) { c = (unsigned char)pgm_read_byte(adns9800_firmware_data + i); spi_write(c); wait_us(15); } spi_stop(); wait_ms(10); // enable laser uint8_t laser_ctrl0 = adns9800_read(REG_LASER_CTRL0); adns9800_write(REG_LASER_CTRL0, laser_ctrl0 & 0xf0); adns9800_set_cpi(ADNS9800_CPI); } config_adns9800_t adns9800_get_config(void) { uint8_t cpival = adns9800_read(REG_Configuration_I); return (config_adns9800_t){(cpival & 0xFF) * CPI_STEP}; } void adns9800_set_config(config_adns9800_t config) { uint8_t config_1 = (CLAMP_CPI(config.cpi) / CPI_STEP) & 0xFF; adns9800_write(REG_Configuration_I, config_1); } uint16_t adns9800_get_cpi(void) { uint8_t cpival = adns9800_read(REG_Configuration_I); return (uint16_t)(cpival & 0xFF) * CPI_STEP; } void adns9800_set_cpi(uint16_t cpi) { uint8_t config_1 = (CLAMP_CPI(cpi) / CPI_STEP) & 0xFF; adns9800_write(REG_Configuration_I, config_1); } static int16_t convertDeltaToInt(uint8_t high, uint8_t low) { // join bytes into twos compliment uint16_t twos_comp = (high << 8) | low; // convert twos comp to int if (twos_comp & 0x8000) return -1 * (~twos_comp + 1); return twos_comp; } report_adns9800_t adns9800_get_report(void) { report_adns9800_t report = {0}; adns9800_spi_start(); // start burst mode spi_write(REG_Motion_Burst & 0x7f); wait_us(US_BEFORE_MOTION); uint8_t motion = spi_read(); if (motion & 0x80) { // clear observation register spi_read(); // delta registers uint8_t delta_x_l = spi_read(); uint8_t delta_x_h = spi_read(); uint8_t delta_y_l = spi_read(); uint8_t delta_y_h = spi_read(); report.x = convertDeltaToInt(delta_x_h, delta_x_l); report.y = convertDeltaToInt(delta_y_h, delta_y_l); } // clear residual motion spi_write(REG_Motion & 0x7f); spi_stop(); return report; }