/* Copyright 2017 Jason Williams * Copyright 2018 Jack Humbert * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ #ifdef __AVR__ #include <avr/interrupt.h> #include <avr/io.h> #include <util/delay.h> #else #include "wait.h" #endif #include "is31fl3731.h" #include <string.h> #include "i2c_master.h" #include "progmem.h" // This is a 7-bit address, that gets left-shifted and bit 0 // set to 0 for write, 1 for read (as per I2C protocol) // The address will vary depending on your wiring: // 0b1110100 AD <-> GND // 0b1110111 AD <-> VCC // 0b1110101 AD <-> SCL // 0b1110110 AD <-> SDA #define ISSI_ADDR_DEFAULT 0x74 #define ISSI_REG_CONFIG 0x00 #define ISSI_REG_CONFIG_PICTUREMODE 0x00 #define ISSI_REG_CONFIG_AUTOPLAYMODE 0x08 #define ISSI_REG_CONFIG_AUDIOPLAYMODE 0x18 #define ISSI_CONF_PICTUREMODE 0x00 #define ISSI_CONF_AUTOFRAMEMODE 0x04 #define ISSI_CONF_AUDIOMODE 0x08 #define ISSI_REG_PICTUREFRAME 0x01 #define ISSI_REG_SHUTDOWN 0x0A #define ISSI_REG_AUDIOSYNC 0x06 #define ISSI_COMMANDREGISTER 0xFD #define ISSI_BANK_FUNCTIONREG 0x0B // helpfully called 'page nine' #ifndef ISSI_TIMEOUT #define ISSI_TIMEOUT 100 #endif #ifndef ISSI_PERSISTENCE #define ISSI_PERSISTENCE 0 #endif // Transfer buffer for TWITransmitData() uint8_t g_twi_transfer_buffer[20]; // These buffers match the IS31FL3731 PWM registers 0x24-0xB3. // Storing them like this is optimal for I2C transfers to the registers. // We could optimize this and take out the unused registers from these // buffers and the transfers in IS31FL3731_write_pwm_buffer() but it's // probably not worth the extra complexity. uint8_t g_pwm_buffer[DRIVER_COUNT][144]; bool g_pwm_buffer_update_required = false; uint8_t g_led_control_registers[DRIVER_COUNT][18] = { { 0 }, { 0 } }; bool g_led_control_registers_update_required = false; // This is the bit pattern in the LED control registers // (for matrix A, add one to register for matrix B) // // reg - b7 b6 b5 b4 b3 b2 b1 b0 // 0x00 - R08,R07,R06,R05,R04,R03,R02,R01 // 0x02 - G08,G07,G06,G05,G04,G03,G02,R00 // 0x04 - B08,B07,B06,B05,B04,B03,G01,G00 // 0x06 - - , - , - , - , - ,B02,B01,B00 // 0x08 - - , - , - , - , - , - , - , - // 0x0A - B17,B16,B15, - , - , - , - , - // 0x0C - G17,G16,B14,B13,B12,B11,B10,B09 // 0x0E - R17,G15,G14,G13,G12,G11,G10,G09 // 0x10 - R16,R15,R14,R13,R12,R11,R10,R09 void IS31FL3731_write_register( uint8_t addr, uint8_t reg, uint8_t data ) { g_twi_transfer_buffer[0] = reg; g_twi_transfer_buffer[1] = data; #if ISSI_PERSISTENCE > 0 for (uint8_t i = 0; i < ISSI_PERSISTENCE; i++) { if (i2c_transmit(addr << 1, g_twi_transfer_buffer, 2, ISSI_TIMEOUT) == 0) break; } #else i2c_transmit(addr << 1, g_twi_transfer_buffer, 2, ISSI_TIMEOUT); #endif } void IS31FL3731_write_pwm_buffer( uint8_t addr, uint8_t *pwm_buffer ) { // assumes bank is already selected // transmit PWM registers in 9 transfers of 16 bytes // g_twi_transfer_buffer[] is 20 bytes // iterate over the pwm_buffer contents at 16 byte intervals for ( int i = 0; i < 144; i += 16 ) { // set the first register, e.g. 0x24, 0x34, 0x44, etc. g_twi_transfer_buffer[0] = 0x24 + i; // copy the data from i to i+15 // device will auto-increment register for data after the first byte // thus this sets registers 0x24-0x33, 0x34-0x43, etc. in one transfer for ( int j = 0; j < 16; j++ ) { g_twi_transfer_buffer[1 + j] = pwm_buffer[i + j]; } #if ISSI_PERSISTENCE > 0 for (uint8_t i = 0; i < ISSI_PERSISTENCE; i++) { if (i2c_transmit(addr << 1, g_twi_transfer_buffer, 17, ISSI_TIMEOUT) == 0) break; } #else i2c_transmit(addr << 1, g_twi_transfer_buffer, 17, ISSI_TIMEOUT); #endif } } void IS31FL3731_init( uint8_t addr ) { // In order to avoid the LEDs being driven with garbage data // in the LED driver's PWM registers, first enable software shutdown, // then set up the mode and other settings, clear the PWM registers, // then disable software shutdown. // select "function register" bank IS31FL3731_write_register( addr, ISSI_COMMANDREGISTER, ISSI_BANK_FUNCTIONREG ); // enable software shutdown IS31FL3731_write_register( addr, ISSI_REG_SHUTDOWN, 0x00 ); // this delay was copied from other drivers, might not be needed #ifdef __AVR__ _delay_ms( 10 ); #else wait_ms(10); #endif // picture mode IS31FL3731_write_register( addr, ISSI_REG_CONFIG, ISSI_REG_CONFIG_PICTUREMODE ); // display frame 0 IS31FL3731_write_register( addr, ISSI_REG_PICTUREFRAME, 0x00 ); // audio sync off IS31FL3731_write_register( addr, ISSI_REG_AUDIOSYNC, 0x00 ); // select bank 0 IS31FL3731_write_register( addr, ISSI_COMMANDREGISTER, 0 ); // turn off all LEDs in the LED control register for ( int i = 0x00; i <= 0x11; i++ ) { IS31FL3731_write_register( addr, i, 0x00 ); } // turn off all LEDs in the blink control register (not really needed) for ( int i = 0x12; i <= 0x23; i++ ) { IS31FL3731_write_register( addr, i, 0x00 ); } // set PWM on all LEDs to 0 for ( int i = 0x24; i <= 0xB3; i++ ) { IS31FL3731_write_register( addr, i, 0x00 ); } // select "function register" bank IS31FL3731_write_register( addr, ISSI_COMMANDREGISTER, ISSI_BANK_FUNCTIONREG ); // disable software shutdown IS31FL3731_write_register( addr, ISSI_REG_SHUTDOWN, 0x01 ); // select bank 0 and leave it selected. // most usage after initialization is just writing PWM buffers in bank 0 // as there's not much point in double-buffering IS31FL3731_write_register( addr, ISSI_COMMANDREGISTER, 0 ); } void IS31FL3731_set_color( int index, uint8_t red, uint8_t green, uint8_t blue ) { if ( index >= 0 && index < DRIVER_LED_TOTAL ) { is31_led led = g_is31_leds[index]; // Subtract 0x24 to get the second index of g_pwm_buffer g_pwm_buffer[led.driver][led.r - 0x24] = red; g_pwm_buffer[led.driver][led.g - 0x24] = green; g_pwm_buffer[led.driver][led.b - 0x24] = blue; g_pwm_buffer_update_required = true; } } void IS31FL3731_set_color_all( uint8_t red, uint8_t green, uint8_t blue ) { for ( int i = 0; i < DRIVER_LED_TOTAL; i++ ) { IS31FL3731_set_color( i, red, green, blue ); } } void IS31FL3731_set_led_control_register( uint8_t index, bool red, bool green, bool blue ) { is31_led led = g_is31_leds[index]; uint8_t control_register_r = (led.r - 0x24) / 8; uint8_t control_register_g = (led.g - 0x24) / 8; uint8_t control_register_b = (led.b - 0x24) / 8; uint8_t bit_r = (led.r - 0x24) % 8; uint8_t bit_g = (led.g - 0x24) % 8; uint8_t bit_b = (led.b - 0x24) % 8; if ( red ) { g_led_control_registers[led.driver][control_register_r] |= (1 << bit_r); } else { g_led_control_registers[led.driver][control_register_r] &= ~(1 << bit_r); } if ( green ) { g_led_control_registers[led.driver][control_register_g] |= (1 << bit_g); } else { g_led_control_registers[led.driver][control_register_g] &= ~(1 << bit_g); } if ( blue ) { g_led_control_registers[led.driver][control_register_b] |= (1 << bit_b); } else { g_led_control_registers[led.driver][control_register_b] &= ~(1 << bit_b); } g_led_control_registers_update_required = true; } void IS31FL3731_update_pwm_buffers( uint8_t addr1, uint8_t addr2 ) { if ( g_pwm_buffer_update_required ) { IS31FL3731_write_pwm_buffer( addr1, g_pwm_buffer[0] ); IS31FL3731_write_pwm_buffer( addr2, g_pwm_buffer[1] ); } g_pwm_buffer_update_required = false; } void IS31FL3731_update_led_control_registers( uint8_t addr1, uint8_t addr2 ) { if ( g_led_control_registers_update_required ) { for ( int i=0; i<18; i++ ) { IS31FL3731_write_register(addr1, i, g_led_control_registers[0][i] ); IS31FL3731_write_register(addr2, i, g_led_control_registers[1][i] ); } } }