/* * light weight WS2812 lib V2.0b * * Controls WS2811/WS2812/WS2812B RGB-LEDs * Author: Tim (cpldcpu@gmail.com) * * Jan 18th, 2014 v2.0b Initial Version * Nov 29th, 2015 v2.3 Added SK6812RGBW support * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include "ws2812.h" #include <avr/interrupt.h> #include <avr/io.h> #include <util/delay.h> #include "debug.h" #if !defined(LED_ARRAY) && defined(RGB_MATRIX_ENABLE) // LED color buffer LED_TYPE led[DRIVER_LED_TOTAL]; #define LED_ARRAY led #endif #ifdef RGBW_BB_TWI // Port for the I2C #define I2C_DDR DDRD #define I2C_PIN PIND #define I2C_PORT PORTD // Pins to be used in the bit banging #define I2C_CLK 0 #define I2C_DAT 1 #define I2C_DATA_HI()\ I2C_DDR &= ~ (1 << I2C_DAT);\ I2C_PORT |= (1 << I2C_DAT); #define I2C_DATA_LO()\ I2C_DDR |= (1 << I2C_DAT);\ I2C_PORT &= ~ (1 << I2C_DAT); #define I2C_CLOCK_HI()\ I2C_DDR &= ~ (1 << I2C_CLK);\ I2C_PORT |= (1 << I2C_CLK); #define I2C_CLOCK_LO()\ I2C_DDR |= (1 << I2C_CLK);\ I2C_PORT &= ~ (1 << I2C_CLK); #define I2C_DELAY 1 void I2C_WriteBit(unsigned char c) { if (c > 0) { I2C_DATA_HI(); } else { I2C_DATA_LO(); } I2C_CLOCK_HI(); _delay_us(I2C_DELAY); I2C_CLOCK_LO(); _delay_us(I2C_DELAY); if (c > 0) { I2C_DATA_LO(); } _delay_us(I2C_DELAY); } // Inits bitbanging port, must be called before using the functions below // void I2C_Init(void) { I2C_PORT &= ~ ((1 << I2C_DAT) | (1 << I2C_CLK)); I2C_CLOCK_HI(); I2C_DATA_HI(); _delay_us(I2C_DELAY); } // Send a START Condition // void I2C_Start(void) { // set both to high at the same time I2C_DDR &= ~ ((1 << I2C_DAT) | (1 << I2C_CLK)); _delay_us(I2C_DELAY); I2C_DATA_LO(); _delay_us(I2C_DELAY); I2C_CLOCK_LO(); _delay_us(I2C_DELAY); } // Send a STOP Condition // void I2C_Stop(void) { I2C_CLOCK_HI(); _delay_us(I2C_DELAY); I2C_DATA_HI(); _delay_us(I2C_DELAY); } // write a byte to the I2C slave device // unsigned char I2C_Write(unsigned char c) { for (char i = 0; i < 8; i++) { I2C_WriteBit(c & 128); c <<= 1; } I2C_WriteBit(0); _delay_us(I2C_DELAY); _delay_us(I2C_DELAY); // _delay_us(I2C_DELAY); //return I2C_ReadBit(); return 0; } #endif #ifdef RGB_MATRIX_ENABLE // Set an led in the buffer to a color void inline ws2812_setled(int i, uint8_t r, uint8_t g, uint8_t b) { led[i].r = r; led[i].g = g; led[i].b = b; } void ws2812_setled_all (uint8_t r, uint8_t g, uint8_t b) { for (int i = 0; i < sizeof(led)/sizeof(led[0]); i++) { led[i].r = r; led[i].g = g; led[i].b = b; } } #endif // Setleds for standard RGB void inline ws2812_setleds(LED_TYPE *ledarray, uint16_t leds) { // ws2812_setleds_pin(ledarray,leds, _BV(ws2812_pin)); ws2812_setleds_pin(ledarray,leds, _BV(RGB_DI_PIN & 0xF)); } void inline ws2812_setleds_pin(LED_TYPE *ledarray, uint16_t leds, uint8_t pinmask) { // ws2812_DDRREG |= pinmask; // Enable DDR // new universal format (DDR) _SFR_IO8((RGB_DI_PIN >> 4) + 1) |= pinmask; ws2812_sendarray_mask((uint8_t*)ledarray,leds+leds+leds,pinmask); _delay_us(50); } // Setleds for SK6812RGBW void inline ws2812_setleds_rgbw(LED_TYPE *ledarray, uint16_t leds) { #ifdef RGBW_BB_TWI uint8_t sreg_prev, twcr_prev; sreg_prev=SREG; twcr_prev=TWCR; cli(); TWCR &= ~(1<<TWEN); I2C_Init(); I2C_Start(); I2C_Write(0x84); uint16_t datlen = leds<<2; uint8_t curbyte; uint8_t * data = (uint8_t*)ledarray; while (datlen--) { curbyte=*data++; I2C_Write(curbyte); } I2C_Stop(); SREG=sreg_prev; TWCR=twcr_prev; #endif // ws2812_DDRREG |= _BV(ws2812_pin); // Enable DDR // new universal format (DDR) _SFR_IO8((RGB_DI_PIN >> 4) + 1) |= _BV(RGB_DI_PIN & 0xF); ws2812_sendarray_mask((uint8_t*)ledarray,leds<<2,_BV(RGB_DI_PIN & 0xF)); #ifndef RGBW_BB_TWI _delay_us(80); #endif } void ws2812_sendarray(uint8_t *data,uint16_t datlen) { ws2812_sendarray_mask(data,datlen,_BV(RGB_DI_PIN & 0xF)); } /* This routine writes an array of bytes with RGB values to the Dataout pin using the fast 800kHz clockless WS2811/2812 protocol. */ // Timing in ns #define w_zeropulse 350 #define w_onepulse 900 #define w_totalperiod 1250 // Fixed cycles used by the inner loop #define w_fixedlow 2 #define w_fixedhigh 4 #define w_fixedtotal 8 // Insert NOPs to match the timing, if possible #define w_zerocycles (((F_CPU/1000)*w_zeropulse )/1000000) #define w_onecycles (((F_CPU/1000)*w_onepulse +500000)/1000000) #define w_totalcycles (((F_CPU/1000)*w_totalperiod +500000)/1000000) // w1 - nops between rising edge and falling edge - low #define w1 (w_zerocycles-w_fixedlow) // w2 nops between fe low and fe high #define w2 (w_onecycles-w_fixedhigh-w1) // w3 nops to complete loop #define w3 (w_totalcycles-w_fixedtotal-w1-w2) #if w1>0 #define w1_nops w1 #else #define w1_nops 0 #endif // The only critical timing parameter is the minimum pulse length of the "0" // Warn or throw error if this timing can not be met with current F_CPU settings. #define w_lowtime ((w1_nops+w_fixedlow)*1000000)/(F_CPU/1000) #if w_lowtime>550 #error "Light_ws2812: Sorry, the clock speed is too low. Did you set F_CPU correctly?" #elif w_lowtime>450 #warning "Light_ws2812: The timing is critical and may only work on WS2812B, not on WS2812(S)." #warning "Please consider a higher clockspeed, if possible" #endif #if w2>0 #define w2_nops w2 #else #define w2_nops 0 #endif #if w3>0 #define w3_nops w3 #else #define w3_nops 0 #endif #define w_nop1 "nop \n\t" #define w_nop2 "rjmp .+0 \n\t" #define w_nop4 w_nop2 w_nop2 #define w_nop8 w_nop4 w_nop4 #define w_nop16 w_nop8 w_nop8 void inline ws2812_sendarray_mask(uint8_t *data,uint16_t datlen,uint8_t maskhi) { uint8_t curbyte,ctr,masklo; uint8_t sreg_prev; // masklo =~maskhi&ws2812_PORTREG; // maskhi |= ws2812_PORTREG; masklo =~maskhi&_SFR_IO8((RGB_DI_PIN >> 4) + 2); maskhi |= _SFR_IO8((RGB_DI_PIN >> 4) + 2); sreg_prev=SREG; cli(); while (datlen--) { curbyte=(*data++); asm volatile( " ldi %0,8 \n\t" "loop%=: \n\t" " out %2,%3 \n\t" // '1' [01] '0' [01] - re #if (w1_nops&1) w_nop1 #endif #if (w1_nops&2) w_nop2 #endif #if (w1_nops&4) w_nop4 #endif #if (w1_nops&8) w_nop8 #endif #if (w1_nops&16) w_nop16 #endif " sbrs %1,7 \n\t" // '1' [03] '0' [02] " out %2,%4 \n\t" // '1' [--] '0' [03] - fe-low " lsl %1 \n\t" // '1' [04] '0' [04] #if (w2_nops&1) w_nop1 #endif #if (w2_nops&2) w_nop2 #endif #if (w2_nops&4) w_nop4 #endif #if (w2_nops&8) w_nop8 #endif #if (w2_nops&16) w_nop16 #endif " out %2,%4 \n\t" // '1' [+1] '0' [+1] - fe-high #if (w3_nops&1) w_nop1 #endif #if (w3_nops&2) w_nop2 #endif #if (w3_nops&4) w_nop4 #endif #if (w3_nops&8) w_nop8 #endif #if (w3_nops&16) w_nop16 #endif " dec %0 \n\t" // '1' [+2] '0' [+2] " brne loop%=\n\t" // '1' [+3] '0' [+4] : "=&d" (ctr) : "r" (curbyte), "I" (_SFR_IO_ADDR(_SFR_IO8((RGB_DI_PIN >> 4) + 2))), "r" (maskhi), "r" (masklo) ); } SREG=sreg_prev; }