summaryrefslogtreecommitdiffstats
path: root/keyboards/rubi/lib/calc.c
diff options
context:
space:
mode:
Diffstat (limited to 'keyboards/rubi/lib/calc.c')
-rw-r--r--keyboards/rubi/lib/calc.c261
1 files changed, 261 insertions, 0 deletions
diff --git a/keyboards/rubi/lib/calc.c b/keyboards/rubi/lib/calc.c
new file mode 100644
index 0000000000..7796a9be45
--- /dev/null
+++ b/keyboards/rubi/lib/calc.c
@@ -0,0 +1,261 @@
+/*
+This is the modified version of [calculator by MWWorks](https://github.com/MWWorks/mw_calc_numpad/blob/master/calc.c). Below is the quote from [MWWorks](https://github.com/MWWorks).
+
+ Calculator for QMK-based keyboard by MWWorks, https://mwworks.uk
+ This is free, usual disclaimers, don't use it to calculate megaton yields, surgery plans, etc
+
+ I did not plan to reinvent the wheel for this - I figured surely somebody somewhere has working calculator code?
+ Found lots but none that actually work like you expect a calculator to, hence DIYing it
+
+ As such, this is probably a bit janky, especially as I am a bit of a hack at C
+ Seems to be working well, with occasional glitchs, solved by clearing it
+ And some occasional floating-point issues - eg get a long decimal rather than the whole number you were expecting
+ Feel free to fix it! I think it needs to detect the precision of the two operands and then figure out what the precision of the result should be
+
+*/
+#include "rubi.h"
+
+static uint8_t calc_current_operand = 0;
+static char calc_operand_0[CALC_DIGITS+1] = "";
+static char calc_operand_1[CALC_DIGITS+1] = "";
+char calc_result[CALC_DIGITS+1] = "";
+static char calc_status[CALC_DIGITS+1] = "";
+static char calc_operator = ' ';
+static bool calc_reset = false;
+
+
+void calcBegin(void){
+}
+
+//update display
+void calcUpdate(void){
+ if (calc_display_lines == 2) {
+ if((calc_current_operand == 1) || (calc_reset)){
+ strcpy(calc_status, calc_operand_0);
+ if((strlen(calc_operand_0)>0) || (strlen(calc_operand_1)>0)){
+ uint8_t len = strlen(calc_status);
+ if (!(calc_operator == 's' || calc_operator == 'r' || calc_operator == 'n')) {
+ calc_status[len] = calc_operator;
+ }
+ calc_status[len+1] = 0;
+ if(calc_reset
+ && !(calc_operator == 's' || calc_operator == 'r' || calc_operator == 'n')){
+ strncat(calc_status, calc_operand_1, CALC_DIGITS-strlen(calc_status));
+ calc_operator = ' ';
+ }
+ }
+ strcpy(calc_status_display, calc_status);
+ }
+ } else if (calc_display_lines == 1) {
+ if(calc_reset
+ && !(calc_operator == 's' || calc_operator == 'r' || calc_operator == 'n')){
+ calc_operator = ' ';
+ }
+ }
+ calc_operator_display = calc_operator;
+ strcpy(calc_result_display, calc_result);
+}
+
+//perform calculation on the 2 operands
+void calcOperands(void){
+ float result = 0;
+ switch (calc_operator){
+
+ //standard operators
+ case '+':
+ result = strtod(calc_operand_0, NULL) + strtod(calc_operand_1, NULL);
+ break;
+
+ case '-':
+ result = strtod(calc_operand_0, NULL) - strtod(calc_operand_1, NULL);
+ break;
+
+ case '/':
+ result = strtod(calc_operand_0, NULL) / strtod(calc_operand_1, NULL);
+ break;
+
+ case '*':
+ result = strtod(calc_operand_0, NULL) * strtod(calc_operand_1, NULL);
+ break;
+
+ //single operand operators - these are all in 2
+ case 's':
+ result = sqrt(strtod(calc_operand_0, NULL));
+ break;
+
+ case 'r':
+ result = 1/(strtod(calc_operand_0, NULL));
+ break;
+
+ }
+
+ //now convert the float result into a string
+ //we know the total string size but we need to find the size of the integer component to know how much we have for decimals
+ uint8_t magnitude = ceil(log10(result));
+ uint8_t max_decimals = CALC_DIGITS-magnitude-1;
+ //but max it at 7 because that seems the useful limit of our floats
+ if(max_decimals>7){
+ max_decimals = 7;
+ }
+ dtostrf(result, CALC_DIGITS, max_decimals, calc_result);
+
+ //now to clean up the result - we need it clean as it may be the input of next calculation
+ //this seems a lot of code to format this string :| note that this c doesn't support float in sprintf
+ uint8_t i;
+
+ //first find if theres a dot
+ uint8_t dotpos = CALC_DIGITS+1;
+ for(i=0; i<strlen(calc_result); i++){
+ if(calc_result[i] == '.'){
+ dotpos = i;
+ break;
+ }
+ }
+
+ //if there is, work back to it and remove trailing 0 or .
+ if(dotpos>=0){
+ for(i=strlen(calc_result)-1; i>=dotpos; i--){
+ if((calc_result[i] == '0') || (calc_result[i] == '.')){
+ calc_result[i] = 0;
+ }else{
+ break;
+ }
+ }
+ }
+
+ //now find how many leading spaces
+ uint8_t spaces = 0;
+ for(i=0; i<strlen(calc_result); i++){
+ if(calc_result[i] == ' '){
+ spaces++;
+ }else{
+ break;
+ }
+ }
+
+ //and shift the string
+ for(i=0; i<strlen(calc_result)-spaces; i++){
+ calc_result[i] = calc_result[i+spaces];
+ }
+ calc_result[strlen(calc_result)-spaces] = 0;
+
+ calcUpdate();
+ //the result is available as the first operand for another calculation
+ strcpy(calc_operand_0, calc_result);
+ calc_operand_1[0] = 0;
+
+}
+
+void calcInput(char input){
+ char *operand = calc_operand_0;
+ if(calc_current_operand == 1){
+ operand = calc_operand_1;
+ }
+ uint8_t len = strlen(operand);
+
+ if(
+ ((input >= 48) && (input <= 57)) ||
+ (input == '.')
+ ){
+ //if this is following an equals, then we start from scratch as if new calculation
+ if(calc_reset == true){
+ calc_reset = false;
+ calc_current_operand = 0;
+ calc_operand_0[0] = 0;
+ calc_operand_1[0] = 0;
+ operand = calc_operand_0;
+ len = 0;
+ }
+
+ if(len<CALC_DIGITS){
+ operand[len] = input;
+ operand[len+1] = 0;
+ strcpy(calc_result, operand);
+ calcUpdate();
+ }
+
+ //special input to backspace
+ }else if(input == 'x'){
+ operand[len-1] = 0;
+ strcpy(calc_result, operand);
+ calcUpdate();
+
+ //clear
+ }else if(input == 'c'){
+ operand[0] = 0;
+ calc_operand_0[0] = 0;
+ calc_operand_1[0] = 0;
+ calc_operator = ' ';
+ calc_reset = true;
+ strcpy(calc_result, operand);
+ calcUpdate();
+
+ //special input switch neg/pos
+ }else if((input == 'n') && (len>0)){
+ uint8_t i;
+
+ if(operand[0] == '-'){
+ for(i=1; i<=len; i++){
+ operand[i-1] = operand[i];
+ }
+ }else if(len<CALC_DIGITS){
+ for(i=0; i<=len; i++){
+ operand[len-i+1] = operand[len-i];
+ }
+ operand[0] = '-';
+ }
+ calc_operator = input;
+ strcpy(calc_result, operand);
+ calcUpdate();
+
+
+ //standard 2 operand operators
+ }else if((input == '+') || (input == '-') || (input == '*') || (input == '/')){
+
+ //get ready for second operand
+ if(calc_current_operand == 0){
+ calc_operator = input;
+ calc_current_operand = 1;
+ calcUpdate();
+
+ //we pressed = we now expect a new second operand
+ }else if(calc_reset){
+ calc_operator = input;
+ calc_reset = false;
+ calc_operand_1[0] = 0;
+ calcUpdate();
+
+ }else {
+ //if we use this on the second operand, calculate first, then ready for a second operand again
+ if (strlen(calc_operand_1)>0){
+ calcOperands();
+ }
+ calc_operand_1[0] = 0;
+ calc_operator = input;
+ calcUpdate();
+ }
+
+
+ }else if(input == '='){
+ //only accept = if we are on the second operand
+ if(calc_current_operand == 1){
+ //keep the second operand for a subsequent press of =; but flag to reset if start entry of new operand
+ calc_reset = true;
+ calcOperands();
+ }
+
+ //single operands - square root and reciprocal - needs to operate on 0 so it works after a previous = result
+ }else if((input == 's') || (input == 'r')){
+ //but maybe we started entering 1
+ if(calc_current_operand == 1 && !calc_reset){
+ strcpy(calc_operand_0, calc_operand_1);
+ }
+ calc_current_operand = 1;
+ calc_operand_1[0] = 0;
+ calc_operator = input;
+ calc_reset = true; //simulate another =
+ calcOperands();
+
+ }
+
+}