diff options
43 files changed, 8182 insertions, 4930 deletions
diff --git a/.gitignore b/.gitignore index 49eb2d5587..1e19ce9a87 100644 --- a/.gitignore +++ b/.gitignore @@ -13,3 +13,4 @@ tags build/ *.bak .vagrant/ +.DS_STORE
\ No newline at end of file diff --git a/QUICK_START.md b/QUICK_START.md index 6be377db3c..948308ca11 100644 --- a/QUICK_START.md +++ b/QUICK_START.md @@ -20,6 +20,6 @@ See [doc/keymap.md](tmk_core/doc/keymap.md). ## Flashing the firmware -The "easy" way to flash the firmware is using a tool from your host OS like the Teensy programming app. [ErgoDox EZ](keyboard/ergodox_ez/README.md) gives a great example. +The "easy" way to flash the firmware is using a tool from your host OS like the Teensy programming app. [ErgoDox EZ](keyboard/ergodox_ez/readme.md) gives a great example. If you want to program via the command line you can uncomment the ['modifyvm'] lines in the Vagrantfile to enable the USB passthrough into Linux and then program using the command line tools like dfu-util/dfu-programmer or you can install the Teensy CLI version. @@ -132,15 +132,75 @@ A macro can include the following commands: So above you can see the stroke interval changed to 255ms between each keystroke, then a bunch of keys being typed, waits a while, then the macro ends. -Note: Using macros to have your keyboard send passwords for you is a bad idea. +Note: Using macros to have your keyboard send passwords for you is possible, but a bad idea. -### Additional keycode aliases for software-implemented layouts (Colemak, Dvorak, etc) +### Advanced macro functions + +To get more control over the keys/actions your keyboard takes, the following functions are available to you in the `action_get_macro` function block: + +* `record->event.pressed` + +This is a boolean value that can be tested to see if the switch is being pressed or released. An example of this is + +```c +if (record->event.pressed) { + // on keydown +} else { + // on keyup +} +``` + +* `register_code(<kc>);` + +This sends the `<kc>` keydown event to the computer. Some examples would be `KC_ESC`, `KC_C`, `KC_4`, and even modifiers such as `KC_LSFT` and `KC_LGUI`. + +* `unregister_code(<kc>);` + +Parallel to `register_code` function, this sends the `<kc>` keyup event to the computer. If you don't use this, the key will be held down until it's sent. + +* `layer_on(<n>);` + +This will turn on the layer `<n>` - the higher layer number will always take priority. Make sure you have `KC_TRNS` for the key you're pressing on the layer you're switching to, or you'll get stick there unless you have another plan. + +* `layer_off(<n>);` + +This will turn off the layer `<n>`. + +* `clear_keyboard();` + +This will clear all mods and keys currently pressed. + +* `clear_mods();` + +This will clear all mods currently pressed. + +* `clear_keyboard_but_mods();` + +This will clear all keys besides the mods currently pressed. + +#### Timer functionality + +It's possible to start timers and read values for time-specific events - here's an example: + +```c +static uint16_t key_timer; +key_timer = timer_read(); +if (timer_elapsed(key_timer) < 100) { + // do something if less than 100ms have passed +} else { + // do something if 100ms or more have passed +} +``` + +It's best to declare the `static uint16_t key_timer;` outside of the macro block (top of file, etc). + +## Additional keycode aliases for software-implemented layouts (Colemak, Dvorak, etc) Everything is assuming you're in Qwerty (in software) by default, but there is built-in support for using a Colemak or Dvorak layout by including this at the top of your keymap: - #include "keymap_<layout>.h" + #include <keymap_extras/keymap_colemak.h> -Where <layout> is "colemak" or "dvorak". After including this line, you will get access to: +If you use Dvorak, use `keymap_dvorak.h` instead of `keymap_colemak.h` for this line. After including this line, you will get access to: * `CM_*` for all of the Colemak-equivalent characters * `DV_*` for all of the Dvorak-equivalent characters @@ -228,3 +288,24 @@ The firmware supports 5 different light effects, and the color (hue, saturation,  Please note the USB port can only supply a limited amount of power to the keyboard (500mA by standard, however, modern computer and most usb hubs can provide 700+mA.). According to the data of NeoPixel from Adafruit, 30 WS2812 LEDs require a 5V 1A power supply, LEDs used in this mod should not more than 20. + +## Safety Considerations + +You probably don't want to "brick" your keyboard, making it impossible +to rewrite firmware onto it. Here are some of the parameters to show +what things are (and likely aren't) too risky. + +- If a keyboard map does not include RESET, then, to get into DFU + mode, you will need to press the reset button on the PCB, which + requires unscrewing some bits. +- Messing with tmk_core / common files might make the keyboard + inoperable +- Too large a .hex file is trouble; `make dfu` will erase the block, + test the size (oops, wrong order!), which errors out, failing to + flash the keyboard +- DFU tools do /not/ allow you to write into the bootloader (unless + you throw in extra fruitsalad of options), so there is little risk + there. +- EEPROM has around a 100000 write cycle. You shouldn't rewrite the + firmware repeatedly and continually; that'll burn the EEPROM + eventually. diff --git a/keyboard/atomic/README.md b/keyboard/atomic/README.md index 7c30958438..c8e83cf55a 100644 --- a/keyboard/atomic/README.md +++ b/keyboard/atomic/README.md @@ -4,163 +4,7 @@ DIY/Assembled ortholinear 60% keyboard by [Ortholinear Keyboards](http://ortholi ## Quantum MK Firmware -You have access to a bunch of goodies! Check out the Makefile to enable/disable some of the features. Uncomment the `#` to enable them. Setting them to `no` does nothing and will only confuse future you. - - BACKLIGHT_ENABLE = yes # Enable keyboard backlight functionality - MIDI_ENABLE = yes # MIDI controls - # UNICODE_ENABLE = yes # Unicode support - this is commented out, just as an example. You have to use #, not // - BLUETOOTH_ENABLE = yes # Enable Bluetooth with the Adafruit EZ-Key HID - -## Quick aliases to common actions - -Your keymap can include shortcuts to common operations (called "function actions" in tmk). - -### Switching and toggling layers - -`MO(layer)` - momentary switch to *layer*. As soon as you let go of the key, the layer is deactivated and you pop back out to the previous layer. When you apply this to a key, that same key must be set as `KC_TRNS` on the destination layer. Otherwise, you won't make it back to the original layer when you release the key (and you'll get a keycode sent). You can only switch to layers *above* your current layer. If you're on layer 0 and you use `MO(1)`, that will switch to layer 1 just fine. But if you include `MO(3)` on layer 5, that won't do anything for you -- because layer 3 is lower than layer 5 on the stack. - -`LT(layer, kc)` - momentary switch to *layer* when held, and *kc* when tapped. Like `MO()`, this only works upwards in the layer stack (`layer` must be higher than the current layer). - -`TG(layer)` - toggles a layer on or off. As with `MO()`, you should set this key as `KC_TRNS` in the destination layer so that tapping it again actually toggles back to the original layer. Only works upwards in the layer stack. - -### Fun with modifier keys - -* `LSFT(kc)` - applies left Shift to *kc* (keycode) - `S(kc)` is an alias -* `RSFT(kc)` - applies right Shift to *kc* -* `LCTL(kc)` - applies left Control to *kc* -* `RCTL(kc)` - applies right Control to *kc* -* `LALT(kc)` - applies left Alt to *kc* -* `RALT(kc)` - applies right Alt to *kc* -* `LGUI(kc)` - applies left GUI (command/win) to *kc* -* `RGUI(kc)` - applies right GUI (command/win) to *kc* - -You can also chain these, like this: - - LALT(LCTL(KC_DEL)) -- this makes a key that sends Alt, Control, and Delete in a single keypress. - -The following shortcuts automatically add `LSFT()` to keycodes to get commonly used symbols. Their long names are also available and documented in `/quantum/keymap_common.h`. - - KC_TILD ~ - KC_EXLM ! - KC_AT @ - KC_HASH # - KC_DLR $ - KC_PERC % - KC_CIRC ^ - KC_AMPR & - KC_ASTR * - KC_LPRN ( - KC_RPRN ) - KC_UNDS _ - KC_PLUS + - KC_LCBR { - KC_RCBR } - KC_PIPE | - KC_COLN : - -`MT(mod, kc)` - is *mod* (modifier key - MOD_LCTL, MOD_LSFT) when held, and *kc* when tapped. In other words, you can have a key that sends Esc (or the letter O or whatever) when you tap it, but works as a Control key or a Shift key when you hold it down. - -These are the values you can use for the `mod` in `MT()` (right-hand modifiers are not available): - - * MOD_LCTL - * MOD_LSFT - * MOD_LALT - * MOD_LGUI - -These can also be combined like `MOD_LCTL | MOD_LSFT` e.g. `MT(MOD_LCTL | MOD_LSFT, KC_ESC)` which would activate Control and Shift when held, and send Escape when tapped. - -We've added shortcuts to make common modifier/tap (mod-tap) mappings more compact: - - * `CTL_T(kc)` - is LCTL when held and *kc* when tapped - * `SFT_T(kc)` - is LSFT when held and *kc* when tapped - * `ALT_T(kc)` - is LALT when held and *kc* when tapped - * `GUI_T(kc)` - is LGUI when held and *kc* when tapped - * `ALL_T(kc)` - is Hyper (all mods) when held and *kc* when tapped. To read more about what you can do with a Hyper key, see [this blog post by Brett Terpstra](http://brettterpstra.com/2012/12/08/a-useful-caps-lock-key/) - -### Temporarily setting the default layer - -`DF(layer)` - sets default layer to *layer*. The default layer is the one at the "bottom" of the layer stack - the ultimate fallback layer. This currently does not persist over power loss. When you plug the keyboard back in, layer 0 will always be the default. It is theoretically possible to work around that, but that's not what `DF` does. - -### Remember: These are just aliases - -These functions work the same way that their `ACTION_*` functions do - they're just quick aliases. To dig into all of the tmk ACTION_* functions, please see the [TMK documentation](https://github.com/jackhumbert/qmk_firmware/blob/master/tmk_core/doc/keymap.md#2-action). - -Instead of using `FNx` when defining `ACTION_*` functions, you can use `F(x)` - the benefit here is being able to use more than 32 function actions (up to 4096), if you happen to need them. - -## Macro shortcuts: Send a whole string when pressing just one key - -Instead of using the `ACTION_MACRO` function, you can simply use `M(n)` to access macro *n* - *n* will get passed into the `action_get_macro` as the `id`, and you can use a switch statement to trigger it. This gets called on the keydown and keyup, so you'll need to use an if statement testing `record->event.pressed` (see keymap_default.c). - -```c -const macro_t *action_get_macro(keyrecord_t *record, uint8_t id, uint8_t opt) // this is the function signature -- just copy/paste it into your keymap file as it is. -{ - switch(id) { - case 0: // this would trigger when you hit a key mapped as M(0) - if (record->event.pressed) { - return MACRO( I(255), T(H), T(E), T(L), T(L), W(255), T(O), END ); // this sends the string 'hello' when the macro executes - } - break; - } - return MACRO_NONE; -}; -``` -A macro can include the following commands: - -* I() change interval of stroke in milliseconds. -* D() press key. -* U() release key. -* T() type key(press and release). -* W() wait (milliseconds). -* END end mark. - -So above you can see the stroke interval changed to 255ms between each keystroke, then a bunch of keys being typed, waits a while, then the macro ends. - -Note: Using macros to have your keyboard send passwords for you is a bad idea. - -### Additional keycode aliases for software-implemented layouts (Colemak, Dvorak, etc) - -Everything is assuming you're in Qwerty (in software) by default, but there is built-in support for using a Colemak or Dvorak layout by including this at the top of your keymap: - - #include "keymap_<layout>.h" - -Where <layout> is "colemak" or "dvorak". After including this line, you will get access to: - - * `CM_*` for all of the Colemak-equivalent characters - * `DV_*` for all of the Dvorak-equivalent characters - -These implementations assume you're using Colemak or Dvorak on your OS, not on your keyboard - this is referred to as a software-implemented layout. If your computer is in Qwerty and your keymap is in Colemak or Dvorak, this is referred to as a firmware-implemented layout, and you won't need these features. - -To give an example, if you're using software-implemented Colemak, and want to get an `F`, you would use `CM_F` - `KC_F` under these same circumstances would result in `T`. - -## Additional language support - -In `quantum/keymap_extras/`, you'll see various language files - these work the same way as the alternative layout ones do. Most are defined by their two letter country/language code followed by an underscore and a 4-letter abbreviation of its name. `FR_UGRV` which will result in a `รน` when using a software-implemented AZERTY layout. It's currently difficult to send such characters in just the firmware (but it's being worked on - see Unicode support). - -## Unicode support - -You can currently send 4 hex digits with your OS-specific modifier key (RALT for OSX with the "Unicode Hex Input" layout) - this is currently limited to supporting one OS at a time, and requires a recompile for switching. 8 digit hex codes are being worked on. The keycode function is `UC(n)`, where *n* is a 4 digit hexidecimal. Enable from the Makefile. - -## Other firmware shortcut keycodes - -* `RESET` - puts the MCU in DFU mode for flashing new firmware (with `make dfu`) -* `DEBUG` - the firmware into debug mode - you'll need hid_listen to see things -* `BL_ON` - turns the backlight on -* `BL_OFF` - turns the backlight off -* `BL_<n>` - sets the backlight to level *n* -* `BL_INC` - increments the backlight level by one -* `BL_DEC` - decrements the backlight level by one -* `BL_TOGG` - toggles the backlight -* `BL_STEP` - steps through the backlight levels - -Enable the backlight from the Makefile. - -## MIDI functionalty - -This is still a WIP, but check out `quantum/keymap_midi.c` to see what's happening. Enable from the Makefile. - -## Bluetooth functionality - -This requires [some hardware changes](https://www.reddit.com/r/MechanicalKeyboards/comments/3psx0q/the_planck_keyboard_with_bluetooth_guide_and/?ref=search_posts), but can be enabled via the Makefile. The firmware will still output characters via USB, so be aware of this when charging via a computer. It would make sense to have a switch on the Bluefruit to turn it off at will. +For the full Quantum feature list, see [the parent README.md](/README.md). ## Building diff --git a/keyboard/atreus/Makefile b/keyboard/atreus/Makefile new file mode 100644 index 0000000000..e1ebee47bd --- /dev/null +++ b/keyboard/atreus/Makefile @@ -0,0 +1,139 @@ +#---------------------------------------------------------------------------- +# On command line: +# +# make all = Make software. +# +# make clean = Clean out built project files. +# +# make coff = Convert ELF to AVR COFF. +# +# make extcoff = Convert ELF to AVR Extended COFF. +# +# make program = Download the hex file to the device. +# Please customize your programmer settings(PROGRAM_CMD) +# +# make teensy = Download the hex file to the device, using teensy_loader_cli. +# (must have teensy_loader_cli installed). +# +# make dfu = Download the hex file to the device, using dfu-programmer (must +# have dfu-programmer installed). +# +# make flip = Download the hex file to the device, using Atmel FLIP (must +# have Atmel FLIP installed). +# +# make dfu-ee = Download the eeprom file to the device, using dfu-programmer +# (must have dfu-programmer installed). +# +# make flip-ee = Download the eeprom file to the device, using Atmel FLIP +# (must have Atmel FLIP installed). +# +# make debug = Start either simulavr or avarice as specified for debugging, +# with avr-gdb or avr-insight as the front end for debugging. +# +# make filename.s = Just compile filename.c into the assembler code only. +# +# make filename.i = Create a preprocessed source file for use in submitting +# bug reports to the GCC project. +# +# To rebuild project do "make clean" then "make all". +#---------------------------------------------------------------------------- + +# Target file name (without extension). +TARGET = atreus + + +# Directory common source filess exist +TOP_DIR = ../.. +TMK_DIR = ../../tmk_core + +# Directory keyboard dependent files exist +TARGET_DIR = . + +# # project specific files +SRC = atreus.c + +ifdef KEYMAP + SRC := keymaps/keymap_$(KEYMAP).c $(SRC) +else + SRC := keymaps/keymap_default.c $(SRC) +endif + +CONFIG_H = config.h + +# MCU name +#MCU = at90usb1287 +MCU = atmega32u4 + +# Processor frequency. +# This will define a symbol, F_CPU, in all source code files equal to the +# processor frequency in Hz. You can then use this symbol in your source code to +# calculate timings. Do NOT tack on a 'UL' at the end, this will be done +# automatically to create a 32-bit value in your source code. +# +# This will be an integer division of F_USB below, as it is sourced by +# F_USB after it has run through any CPU prescalers. Note that this value +# does not *change* the processor frequency - it should merely be updated to +# reflect the processor speed set externally so that the code can use accurate +# software delays. +F_CPU = 16000000 + + +# +# LUFA specific +# +# Target architecture (see library "Board Types" documentation). +ARCH = AVR8 + +# Input clock frequency. +# This will define a symbol, F_USB, in all source code files equal to the +# input clock frequency (before any prescaling is performed) in Hz. This value may +# differ from F_CPU if prescaling is used on the latter, and is required as the +# raw input clock is fed directly to the PLL sections of the AVR for high speed +# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL' +# at the end, this will be done automatically to create a 32-bit value in your +# source code. +# +# If no clock division is performed on the input clock inside the AVR (via the +# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU. +F_USB = $(F_CPU) + +# Interrupt driven control endpoint task(+60) +OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT + + +# Boot Section Size in *bytes* +# Teensy halfKay 512 +# Teensy++ halfKay 1024 +# Atmel DFU loader 4096 +# LUFA bootloader 4096 +# USBaspLoader 2048 +OPT_DEFS += -DBOOTLOADER_SIZE=4096 + + +# Build Options +# comment out to disable the options. +# +#BOOTMAGIC_ENABLE = yes # Virtual DIP switch configuration(+1000) +#MOUSEKEY_ENABLE = yes # Mouse keys(+4700) +#EXTRAKEY_ENABLE = yes # Audio control and System control(+450) +CONSOLE_ENABLE = yes # Console for debug(+400) +COMMAND_ENABLE = yes # Commands for debug and configuration +# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE +# SLEEP_LED_ENABLE = yes # Breathing sleep LED during USB suspend +NKRO_ENABLE = yes # USB Nkey Rollover - not yet supported in LUFA +# BACKLIGHT_ENABLE = yes # Enable keyboard backlight functionality +# MIDI_ENABLE = YES # MIDI controls +UNICODE_ENABLE = YES # Unicode +# BLUETOOTH_ENABLE = yes # Enable Bluetooth with the Adafruit EZ-Key HID + + +# Optimize size but this may cause error "relocation truncated to fit" +#EXTRALDFLAGS = -Wl,--relax + +# Search Path +VPATH += $(TARGET_DIR) +VPATH += $(TOP_DIR) +VPATH += $(TMK_DIR) + +include $(TOP_DIR)/quantum/quantum.mk + diff --git a/keyboard/atreus/README.md b/keyboard/atreus/README.md new file mode 100644 index 0000000000..75f198fd1c --- /dev/null +++ b/keyboard/atreus/README.md @@ -0,0 +1,184 @@ +atreus keyboard firmware +====================== + +## Note + +This is for the Teensy2 hand wired boards only. + +## Quantum MK Firmware + +You have access to a bunch of goodies! Check out the Makefile to enable/disable some of the features. Uncomment the `#` to enable them. Setting them to `no` does nothing and will only confuse future you. + + BACKLIGHT_ENABLE = yes # Enable keyboard backlight functionality + MIDI_ENABLE = yes # MIDI controls + # UNICODE_ENABLE = yes # Unicode support - this is commented out, just as an example. You have to use #, not // + BLUETOOTH_ENABLE = yes # Enable Bluetooth with the Adafruit EZ-Key HID + +## Quick aliases to common actions + +Your keymap can include shortcuts to common operations (called "function actions" in tmk). + +### Switching and toggling layers + +`MO(layer)` - momentary switch to *layer*. As soon as you let go of the key, the layer is deactivated and you pop back out to the previous layer. When you apply this to a key, that same key must be set as `KC_TRNS` on the destination layer. Otherwise, you won't make it back to the original layer when you release the key (and you'll get a keycode sent). You can only switch to layers *above* your current layer. If you're on layer 0 and you use `MO(1)`, that will switch to layer 1 just fine. But if you include `MO(3)` on layer 5, that won't do anything for you -- because layer 3 is lower than layer 5 on the stack. + +`LT(layer, kc)` - momentary switch to *layer* when held, and *kc* when tapped. Like `MO()`, this only works upwards in the layer stack (`layer` must be higher than the current layer). + +`TG(layer)` - toggles a layer on or off. As with `MO()`, you should set this key as `KC_TRNS` in the destination layer so that tapping it again actually toggles back to the original layer. Only works upwards in the layer stack. + +### Fun with modifier keys + +* `LSFT(kc)` - applies left Shift to *kc* (keycode) - `S(kc)` is an alias +* `RSFT(kc)` - applies right Shift to *kc* +* `LCTL(kc)` - applies left Control to *kc* +* `RCTL(kc)` - applies right Control to *kc* +* `LALT(kc)` - applies left Alt to *kc* +* `RALT(kc)` - applies right Alt to *kc* +* `LGUI(kc)` - applies left GUI (command/win) to *kc* +* `RGUI(kc)` - applies right GUI (command/win) to *kc* + +You can also chain these, like this: + + LALT(LCTL(KC_DEL)) -- this makes a key that sends Alt, Control, and Delete in a single keypress. + +The following shortcuts automatically add `LSFT()` to keycodes to get commonly used symbols. Their long names are also available and documented in `/quantum/keymap_common.h`. + + KC_TILD ~ + KC_EXLM ! + KC_AT @ + KC_HASH # + KC_DLR $ + KC_PERC % + KC_CIRC ^ + KC_AMPR & + KC_ASTR * + KC_LPRN ( + KC_RPRN ) + KC_UNDS _ + KC_PLUS + + KC_LCBR { + KC_RCBR } + KC_PIPE | + KC_COLN : + +`MT(mod, kc)` - is *mod* (modifier key - MOD_LCTL, MOD_LSFT) when held, and *kc* when tapped. In other words, you can have a key that sends Esc (or the letter O or whatever) when you tap it, but works as a Control key or a Shift key when you hold it down. + +These are the values you can use for the `mod` in `MT()` (right-hand modifiers are not available): + + * MOD_LCTL + * MOD_LSFT + * MOD_LALT + * MOD_LGUI + +These can also be combined like `MOD_LCTL | MOD_LSFT` e.g. `MT(MOD_LCTL | MOD_LSFT, KC_ESC)` which would activate Control and Shift when held, and send Escape when tapped. + +We've added shortcuts to make common modifier/tap (mod-tap) mappings more compact: + + * `CTL_T(kc)` - is LCTL when held and *kc* when tapped + * `SFT_T(kc)` - is LSFT when held and *kc* when tapped + * `ALT_T(kc)` - is LALT when held and *kc* when tapped + * `GUI_T(kc)` - is LGUI when held and *kc* when tapped + * `ALL_T(kc)` - is Hyper (all mods) when held and *kc* when tapped. To read more about what you can do with a Hyper key, see [this blog post by Brett Terpstra](http://brettterpstra.com/2012/12/08/a-useful-caps-lock-key/) + +### Temporarily setting the default layer + +`DF(layer)` - sets default layer to *layer*. The default layer is the one at the "bottom" of the layer stack - the ultimate fallback layer. This currently does not persist over power loss. When you plug the keyboard back in, layer 0 will always be the default. It is theoretically possible to work around that, but that's not what `DF` does. + +### Remember: These are just aliases + +These functions work the same way that their `ACTION_*` functions do - they're just quick aliases. To dig into all of the tmk ACTION_* functions, please see the [TMK documentation](https://github.com/jackhumbert/qmk_firmware/blob/master/tmk_core/doc/keymap.md#2-action). + +Instead of using `FNx` when defining `ACTION_*` functions, you can use `F(x)` - the benefit here is being able to use more than 32 function actions (up to 4096), if you happen to need them. + +## Macro shortcuts: Send a whole string when pressing just one key + +Instead of using the `ACTION_MACRO` function, you can simply use `M(n)` to access macro *n* - *n* will get passed into the `action_get_macro` as the `id`, and you can use a switch statement to trigger it. This gets called on the keydown and keyup, so you'll need to use an if statement testing `record->event.pressed` (see keymap_default.c). + +```c +const macro_t *action_get_macro(keyrecord_t *record, uint8_t id, uint8_t opt) // this is the function signature -- just copy/paste it into your keymap file as it is. +{ + switch(id) { + case 0: // this would trigger when you hit a key mapped as M(0) + if (record->event.pressed) { + return MACRO( I(255), T(H), T(E), T(L), T(L), W(255), T(O), END ); // this sends the string 'hello' when the macro executes + } + break; + } + return MACRO_NONE; +}; +``` +A macro can include the following commands: + +* I() change interval of stroke in milliseconds. +* D() press key. +* U() release key. +* T() type key(press and release). +* W() wait (milliseconds). +* END end mark. + +So above you can see the stroke interval changed to 255ms between each keystroke, then a bunch of keys being typed, waits a while, then the macro ends. + +Note: Using macros to have your keyboard send passwords for you is a bad idea. + +### Additional keycode aliases for software-implemented layouts (Colemak, Dvorak, etc) |