diff options
author | tmk <hasu@tmk-kbd.com> | 2015-04-10 01:25:48 +0900 |
---|---|---|
committer | tmk <hasu@tmk-kbd.com> | 2015-04-10 01:25:48 +0900 |
commit | 6746e37088ce8ba03529c1226bd216705edb2b1f (patch) | |
tree | a256db88ec3e9e8b1b70839fcd9459d972ce26e0 /protocol/vusb/usbdrv/usbdrvasm18-crc.inc | |
parent | b4e2d325f355a4d083106476393775e75e11f284 (diff) |
Remove core library and build files
Diffstat (limited to 'protocol/vusb/usbdrv/usbdrvasm18-crc.inc')
-rw-r--r-- | protocol/vusb/usbdrv/usbdrvasm18-crc.inc | 707 |
1 files changed, 0 insertions, 707 deletions
diff --git a/protocol/vusb/usbdrv/usbdrvasm18-crc.inc b/protocol/vusb/usbdrv/usbdrvasm18-crc.inc deleted file mode 100644 index f83347df7f..0000000000 --- a/protocol/vusb/usbdrv/usbdrvasm18-crc.inc +++ /dev/null @@ -1,707 +0,0 @@ -/* Name: usbdrvasm18.inc - * Project: V-USB, virtual USB port for Atmel's(r) AVR(r) microcontrollers - * Author: Lukas Schrittwieser (based on 20 MHz usbdrvasm20.inc by Jeroen Benschop) - * Creation Date: 2009-01-20 - * Tabsize: 4 - * Copyright: (c) 2008 by Lukas Schrittwieser and OBJECTIVE DEVELOPMENT Software GmbH - * License: GNU GPL v2 (see License.txt), GNU GPL v3 or proprietary (CommercialLicense.txt) - * Revision: $Id: usbdrvasm18-crc.inc 740 2009-04-13 18:23:31Z cs $ - */ - -/* Do not link this file! Link usbdrvasm.S instead, which includes the - * appropriate implementation! - */ - -/* -General Description: -This file is the 18 MHz version of the asssembler part of the USB driver. It -requires a 18 MHz crystal (not a ceramic resonator and not a calibrated RC -oscillator). - -See usbdrv.h for a description of the entire driver. - -Since almost all of this code is timing critical, don't change unless you -really know what you are doing! Many parts require not only a maximum number -of CPU cycles, but even an exact number of cycles! -*/ - - -;max stack usage: [ret(2), YL, SREG, YH, [sofError], bitcnt(x5), shift, x1, x2, x3, x4, cnt, ZL, ZH] = 14 bytes -;nominal frequency: 18 MHz -> 12 cycles per bit -; Numbers in brackets are clocks counted from center of last sync bit -; when instruction starts -;register use in receive loop to receive the data bytes: -; shift assembles the byte currently being received -; x1 holds the D+ and D- line state -; x2 holds the previous line state -; cnt holds the number of bytes left in the receive buffer -; x3 holds the higher crc byte (see algorithm below) -; x4 is used as temporary register for the crc algorithm -; x5 is used for unstuffing: when unstuffing the last received bit is inverted in shift (to prevent further -; unstuffing calls. In the same time the corresponding bit in x5 is cleared to mark the bit as beening iverted -; zl lower crc value and crc table index -; zh used for crc table accesses - -;-------------------------------------------------------------------------------------------------------------- -; CRC mods: -; table driven crc checker, Z points to table in prog space -; ZL is the lower crc byte, x3 is the higher crc byte -; x4 is used as temp register to store different results -; the initialization of the crc register is not 0xFFFF but 0xFE54. This is because during the receipt of the -; first data byte an virtual zero data byte is added to the crc register, this results in the correct initial -; value of 0xFFFF at beginning of the second data byte before the first data byte is added to the crc. -; The magic number 0xFE54 results form the crc table: At tabH[0x54] = 0xFF = crcH (required) and -; tabL[0x54] = 0x01 -> crcL = 0x01 xor 0xFE = 0xFF -; bitcnt is renamed to x5 and is used for unstuffing purposes, the unstuffing works like in the 12MHz version -;-------------------------------------------------------------------------------------------------------------- -; CRC algorithm: -; The crc register is formed by x3 (higher byte) and ZL (lower byte). The algorithm uses a 'reversed' form -; i.e. that it takes the least significant bit first and shifts to the right. So in fact the highest order -; bit seen from the polynomial devision point of view is the lsb of ZL. (If this sounds strange to you i -; propose a research on CRC :-) ) -; Each data byte received is xored to ZL, the lower crc byte. This byte now builds the crc -; table index. Next the new high byte is loaded from the table and stored in x4 until we have space in x3 -; (its destination). -; Afterwards the lower table is loaded from the table and stored in ZL (the old index is overwritten as -; we don't need it anymore. In fact this is a right shift by 8 bits.) Now the old crc high value is xored -; to ZL, this is the second shift of the old crc value. Now x4 (the temp reg) is moved to x3 and the crc -; calculation is done. -; Prior to the first byte the two CRC register have to be initialized to 0xFFFF (as defined in usb spec) -; however the crc engine also runs during the receipt of the first byte, therefore x3 and zl are initialized -; to a magic number which results in a crc value of 0xFFFF after the first complete byte. -; -; This algorithm is split into the extra cycles of the different bits: -; bit7: XOR the received byte to ZL -; bit5: load the new high byte to x4 -; bit6: load the lower xor byte from the table, xor zl and x3, store result in zl (=the new crc low value) -; move x4 (the new high byte) to x3, the crc value is ready -; - - -macro POP_STANDARD ; 18 cycles - pop ZH - pop ZL - pop cnt - pop x5 - pop x3 - pop x2 - pop x1 - pop shift - pop x4 - endm -macro POP_RETI ; 7 cycles - pop YH - pop YL - out SREG, YL - pop YL - endm - -macro CRC_CLEANUP_AND_CHECK - ; the last byte has already been xored with the lower crc byte, we have to do the table lookup and xor - ; x3 is the higher crc byte, zl the lower one - ldi ZH, hi8(usbCrcTableHigh);[+1] get the new high byte from the table - lpm x2, Z ;[+2][+3][+4] - ldi ZH, hi8(usbCrcTableLow);[+5] get the new low xor byte from the table - lpm ZL, Z ;[+6][+7][+8] - eor ZL, x3 ;[+7] xor the old high byte with the value from the table, x2:ZL now holds the crc value - cpi ZL, 0x01 ;[+8] if the crc is ok we have a fixed remainder value of 0xb001 in x2:ZL (see usb spec) - brne ignorePacket ;[+9] detected a crc fault -> paket is ignored and retransmitted by the host - cpi x2, 0xb0 ;[+10] - brne ignorePacket ;[+11] detected a crc fault -> paket is ignored and retransmitted by the host - endm - - -USB_INTR_VECTOR: -;order of registers pushed: YL, SREG, YH, [sofError], x4, shift, x1, x2, x3, x5, cnt, ZL, ZH - push YL ;[-28] push only what is necessary to sync with edge ASAP - in YL, SREG ;[-26] - push YL ;[-25] - push YH ;[-23] -;---------------------------------------------------------------------------- -; Synchronize with sync pattern: -;---------------------------------------------------------------------------- -;sync byte (D-) pattern LSb to MSb: 01010100 [1 = idle = J, 0 = K] -;sync up with J to K edge during sync pattern -- use fastest possible loops -;The first part waits at most 1 bit long since we must be in sync pattern. -;YL is guarenteed to be < 0x80 because I flag is clear. When we jump to -;waitForJ, ensure that this prerequisite is met. -waitForJ: - inc YL - sbis USBIN, USBMINUS - brne waitForJ ; just make sure we have ANY timeout -waitForK: -;The following code results in a sampling window of < 1/4 bit which meets the spec. - sbis USBIN, USBMINUS ;[-17] - rjmp foundK ;[-16] - sbis USBIN, USBMINUS - rjmp foundK - sbis USBIN, USBMINUS - rjmp foundK - sbis USBIN, USBMINUS - rjmp foundK - sbis USBIN, USBMINUS - rjmp foundK - sbis USBIN, USBMINUS - rjmp foundK - sbis USBIN, USBMINUS - rjmp foundK - sbis USBIN, USBMINUS - rjmp foundK - sbis USBIN, USBMINUS - rjmp foundK -#if USB_COUNT_SOF - lds YL, usbSofCount - inc YL - sts usbSofCount, YL -#endif /* USB_COUNT_SOF */ -#ifdef USB_SOF_HOOK - USB_SOF_HOOK -#endif - rjmp sofError -foundK: ;[-15] -;{3, 5} after falling D- edge, average delay: 4 cycles -;bit0 should be at 30 (2.5 bits) for center sampling. Currently at 4 so 26 cylces till bit 0 sample -;use 1 bit time for setup purposes, then sample again. Numbers in brackets -;are cycles from center of first sync (double K) bit after the instruction - push x4 ;[-14] -; [---] ;[-13] - lds YL, usbInputBufOffset;[-12] used to toggle the two usb receive buffers -; [---] ;[-11] - clr YH ;[-10] - subi YL, lo8(-(usbRxBuf));[-9] [rx loop init] - sbci YH, hi8(-(usbRxBuf));[-8] [rx loop init] - push shift ;[-7] -; [---] ;[-6] - ldi shift, 0x80 ;[-5] the last bit is the end of byte marker for the pid receiver loop - clc ;[-4] the carry has to be clear for receipt of pid bit 0 - sbis USBIN, USBMINUS ;[-3] we want two bits K (sample 3 cycles too early) - rjmp haveTwoBitsK ;[-2] - pop shift ;[-1] undo the push from before - pop x4 ;[1] - rjmp waitForK ;[3] this was not the end of sync, retry -; The entire loop from waitForK until rjmp waitForK above must not exceed two -; bit times (= 24 cycles). - -;---------------------------------------------------------------------------- -; push more registers and initialize values while we sample the first bits: -;---------------------------------------------------------------------------- -haveTwoBitsK: - push x1 ;[0] - push x2 ;[2] - push x3 ;[4] crc high byte - ldi x2, 1<<USBPLUS ;[6] [rx loop init] current line state is K state. D+=="1", D-=="0" - push x5 ;[7] - push cnt ;[9] - ldi cnt, USB_BUFSIZE ;[11] - - -;-------------------------------------------------------------------------------------------------------------- -; receives the pid byte -; there is no real unstuffing algorithm implemented here as a stuffing bit is impossible in the pid byte. -; That's because the last four bits of the byte are the inverted of the first four bits. If we detect a -; unstuffing condition something went wrong and abort -; shift has to be initialized to 0x80 -;-------------------------------------------------------------------------------------------------------------- - -; pid bit 0 - used for even more register saving (we need the z pointer) - in x1, USBIN ;[0] sample line state - andi x1, USBMASK ;[1] filter only D+ and D- bits - eor x2, x1 ;[2] generate inverted of actual bit - sbrc x2, USBMINUS ;[3] if the bit is set we received a zero - sec ;[4] - ror shift ;[5] we perform no unstuffing check here as this is the first bit - mov x2, x1 ;[6] - push ZL ;[7] - ;[8] - push ZH ;[9] - ;[10] - ldi x3, 0xFE ;[11] x3 is the high order crc value - - -bitloopPid: - in x1, USBIN ;[0] sample line state - andi x1, USBMASK ;[1] filter only D+ and D- bits - breq nse0 ;[2] both lines are low so handle se0 - eor x2, x1 ;[3] generate inverted of actual bit - sbrc x2, USBMINUS ;[4] set the carry if we received a zero - sec ;[5] - ror shift ;[6] - ldi ZL, 0x54 ;[7] ZL is the low order crc value - ser x4 ;[8] the is no bit stuffing check here as the pid bit can't be stuffed. if so - ; some error occured. In this case the paket is discarded later on anyway. - mov x2, x1 ;[9] prepare for the next cycle - brcc bitloopPid ;[10] while 0s drop out of shift we get the next bit - eor x4, shift ;[11] invert all bits in shift and store result in x4 - -;-------------------------------------------------------------------------------------------------------------- -; receives data bytes and calculates the crc -; the last USBIN state has to be in x2 -; this is only the first half, due to branch distanc limitations the second half of the loop is near the end -; of this asm file -;-------------------------------------------------------------------------------------------------------------- - -rxDataStart: - in x1, USBIN ;[0] sample line state (note: a se0 check is not useful due to bit dribbling) - ser x5 ;[1] prepare the unstuff marker register - eor x2, x1 ;[2] generates the inverted of the actual bit - bst x2, USBMINUS ;[3] copy the bit from x2 - bld shift, 0 ;[4] and store it in shift - mov x2, shift ;[5] make a copy of shift for unstuffing check - andi x2, 0xF9 ;[6] mask the last six bits, if we got six zeros (which are six ones in fact) - breq unstuff0 ;[7] then Z is set now and we branch to the unstuffing handler -didunstuff0: - subi cnt, 1 ;[8] cannot use dec because it doesn't affect the carry flag - brcs nOverflow ;[9] Too many bytes received. Ignore packet - st Y+, x4 ;[10] store the last received byte - ;[11] st needs two cycles - -; bit1 - in x2, USBIN ;[0] sample line state - andi x1, USBMASK ;[1] check for se0 during bit 0 - breq nse0 ;[2] - andi x2, USBMASK ;[3] check se0 during bit 1 - breq nse0 ;[4] - eor x1, x2 ;[5] - bst x1, USBMINUS ;[6] - bld shift, 1 ;[7] - mov x1, shift ;[8] - andi x1, 0xF3 ;[9] - breq unstuff1 ;[10] -didunstuff1: - nop ;[11] - -; bit2 - in x1, USBIN ;[0] sample line state - andi x1, USBMASK ;[1] check for se0 (as there is nothing else to do here - breq nOverflow ;[2] - eor x2, x1 ;[3] generates the inverted of the actual bit - bst x2, USBMINUS ;[4] - bld shift, 2 ;[5] store the bit - mov x2, shift ;[6] - andi x2, 0xE7 ;[7] if we have six zeros here (which means six 1 in the stream) - breq unstuff2 ;[8] the next bit is a stuffing bit -didunstuff2: - nop2 ;[9] - ;[10] - nop ;[11] - -; bit3 - in x2, USBIN ;[0] sample line state - andi x2, USBMASK ;[1] check for se0 - breq nOverflow ;[2] - eor x1, x2 ;[3] - bst x1, USBMINUS ;[4] - bld shift, 3 ;[5] - mov x1, shift ;[6] - andi x1, 0xCF ;[7] - breq unstuff3 ;[8] -didunstuff3: - nop ;[9] - rjmp rxDataBit4 ;[10] - ;[11] - -; the avr branch instructions allow an offset of +63 insturction only, so we need this -; 'local copy' of se0 -nse0: - rjmp se0 ;[4] - ;[5] -; the same same as for se0 is needed for overflow and StuffErr -nOverflow: -stuffErr: - rjmp overflow - - -unstuff0: ;[8] this is the branch delay of breq unstuffX - andi x1, USBMASK ;[9] do an se0 check here (if the last crc byte ends with 5 one's we might end up here - breq didunstuff0 ;[10] event tough the message is complete -> jump back and store the byte - ori shift, 0x01 ;[11] invert the last received bit to prevent furhter unstuffing - in x2, USBIN ;[0] we have some free cycles so we could check for bit stuffing errors - andi x5, 0xFE ;[1] mark this bit as inverted (will be corrected before storing shift) - eor x1, x2 ;[2] x1 and x2 have to be different because the stuff bit is always a zero - andi x1, USBMASK ;[3] mask the interesting bits - breq stuffErr ;[4] if the stuff bit is a 1-bit something went wrong - mov x1, x2 ;[5] the next bit expects the last state to be in x1 - rjmp didunstuff0 ;[6] - ;[7] jump delay of rjmp didunstuffX - -unstuff1: ;[11] this is the jump delay of breq unstuffX - in x1, USBIN ;[0] we have some free cycles so we could check for bit stuffing errors - ori shift, 0x02 ;[1] invert the last received bit to prevent furhter unstuffing - andi x5, 0xFD ;[2] mark this bit as inverted (will be corrected before storing shift) - eor x2, x1 ;[3] x1 and x2 have to be different because the stuff bit is always a zero - andi x2, USBMASK ;[4] mask the interesting bits - breq stuffErr ;[5] if the stuff bit is a 1-bit something went wrong - mov x2, x1 ;[6] the next bit expects the last state to be in x2 - nop2 ;[7] - ;[8] - rjmp didunstuff1 ;[9] - ;[10] jump delay of rjmp didunstuffX - -unstuff2: ;[9] this is the jump delay of breq unstuffX - ori shift, 0x04 ;[10] invert the last received bit to prevent furhter unstuffing - andi x5, 0xFB ;[11] mark this bit as inverted (will be corrected before storing shift) - in x2, USBIN ;[0] we have some free cycles so we could check for bit stuffing errors - eor x1, x2 ;[1] x1 and x2 have to be different because the stuff bit is always a zero - andi x1, USBMASK ;[2] mask the interesting bits - breq stuffErr ;[3] if the stuff bit is a 1-bit something went wrong - mov x1, x2 ;[4] the next bit expects the last state to be in x1 - nop2 ;[5] - ;[6] - rjmp didunstuff2 ;[7] - ;[8] jump delay of rjmp didunstuffX - -unstuff3: ;[9] this is the jump delay of breq unstuffX - ori shift, 0x08 ;[10] invert the last received bit to prevent furhter unstuffing - andi x5, 0xF7 ;[11] mark this bit as inverted (will be corrected before storing shift) - in x1, USBIN ;[0] we have some free cycles so we could check for bit stuffing errors - eor x2, x1 ;[1] x1 and x2 have to be different because the stuff bit is always a zero - andi x2, USBMASK ;[2] mask the interesting bits - breq stuffErr ;[3] if the stuff bit is a 1-bit something went wrong - mov x2, x1 ;[4] the next bit expects the last state to be in x2 - nop2 ;[5] - ;[6] - rjmp didunstuff3 ;[7] - ;[8] jump delay of rjmp didunstuffX - - - -; the include has to be here due to branch distance restirctions -#define __USE_CRC__ -#include "asmcommon.inc" - - - -; USB spec says: -; idle = J -; J = (D+ = 0), (D- = 1) -; K = (D+ = 1), (D- = 0) -; Spec allows 7.5 bit times from EOP to SOP for replies -; 7.5 bit times is 90 cycles. ...there is plenty of time - - -sendNakAndReti: - ldi x3, USBPID_NAK ;[-18] - rjmp sendX3AndReti ;[-17] -sendAckAndReti: - ldi cnt, USBPID_ACK ;[-17] -sendCntAndReti: - mov x3, cnt ;[-16] -sendX3AndReti: - ldi YL, 20 ;[-15] x3==r20 address is 20 - ldi YH, 0 ;[-14] - ldi cnt, 2 ;[-13] -; rjmp usbSendAndReti fallthrough - -;usbSend: -;pointer to data in 'Y' -;number of bytes in 'cnt' -- including sync byte [range 2 ... 12] -;uses: x1...x4, btcnt, shift, cnt, Y -;Numbers in brackets are time since first bit of sync pattern is sent - -usbSendAndReti: ; 12 cycles until SOP - in x2, USBDDR ;[-12] - ori x2, USBMASK ;[-11] - sbi USBOUT, USBMINUS;[-10] prepare idle state; D+ and D- must have been 0 (no pullups) - in x1, USBOUT ;[-8] port mirror for tx loop - out USBDDR, x2 ;[-6] <- acquire bus - ldi x2, 0 ;[-6] init x2 (bitstuff history) because sync starts with 0 - ldi x4, USBMASK ;[-5] exor mask - ldi shift, 0x80 ;[-4] sync byte is first byte sent -txByteLoop: - ldi bitcnt, 0x40 ;[-3]=[9] binary 01000000 -txBitLoop: ; the loop sends the first 7 bits of the byte - sbrs shift, 0 ;[-2]=[10] if we have to send a 1 don't change the line state - eor x1, x4 ;[-1]=[11] - out USBOUT, x1 ;[0] - ror shift ;[1] - ror x2 ;[2] transfers the last sent bit to the stuffing history -didStuffN: - nop ;[3] - nop ;[4] - cpi x2, 0xfc ;[5] if we sent six consecutive ones - brcc bitstuffN ;[6] - lsr bitcnt ;[7] - brne txBitLoop ;[8] restart the loop while the 1 is still in the bitcount - -; transmit bit 7 - sbrs shift, 0 ;[9] - eor x1, x4 ;[10] -didStuff7: - ror shift ;[11] - out USBOUT, x1 ;[0] transfer bit 7 to the pins - ror x2 ;[1] move the bit into the stuffing history - cpi x2, 0xfc ;[2] - brcc bitstuff7 ;[3] - ld shift, y+ ;[4] get next byte to transmit - dec cnt ;[5] decrement byte counter - brne txByteLoop ;[7] if we have more bytes start next one - ;[8] branch delay - -;make SE0: - cbr x1, USBMASK ;[8] prepare SE0 [spec says EOP may be 25 to 30 cycles] - lds x2, usbNewDeviceAddr;[9] - lsl x2 ;[11] we compare with left shifted address - out USBOUT, x1 ;[0] <-- out SE0 -- from now 2 bits = 24 cycles until bus idle - subi YL, 20 + 2 ;[1] Only assign address on data packets, not ACK/NAK in x3 - sbci YH, 0 ;[2] -;2006-03-06: moved transfer of new address to usbDeviceAddr from C-Code to asm: -;set address only after data packet was sent, not after handshake - breq skipAddrAssign ;[3] - sts usbDeviceAddr, x2 ; if not skipped: SE0 is one cycle longer -skipAddrAssign: -;end of usbDeviceAddress transfer - ldi x2, 1<<USB_INTR_PENDING_BIT;[5] int0 occurred during TX -- clear pending flag - USB_STORE_PENDING(x2) ;[6] - ori x1, USBIDLE ;[7] - in x2, USBDDR ;[8] - cbr x2, USBMASK ;[9] set both pins to input - mov x3, x1 ;[10] - cbr x3, USBMASK ;[11] configure no pullup on both pins - ldi x4, 4 ;[12] -se0Delay: - dec x4 ;[13] [16] [19] [22] - brne se0Delay ;[14] [17] [20] [23] - out USBOUT, x1 ;[24] <-- out J (idle) -- end of SE0 (EOP signal) - out USBDDR, x2 ;[25] <-- release bus now - out USBOUT, x3 ;[26] <-- ensure no pull-up resistors are active - rjmp doReturn - -bitstuffN: - eor x1, x4 ;[8] generate a zero - ldi x2, 0 ;[9] reset the bit stuffing history - nop2 ;[10] - out USBOUT, x1 ;[0] <-- send the stuffing bit - rjmp didStuffN ;[1] - -bitstuff7: - eor x1, x4 ;[5] - ldi x2, 0 ;[6] reset bit stuffing history - clc ;[7] fill a zero into the shift register - rol shift ;[8] compensate for ror shift at branch destination - rjmp didStuff7 ;[9] - ;[10] jump delay - -;-------------------------------------------------------------------------------------------------------------- -; receives data bytes and calculates the crc -; second half of the data byte receiver loop -; most parts of the crc algorithm are here -;-------------------------------------------------------------------------------------------------------------- - -nOverflow2: - rjmp overflow - -rxDataBit4: - in x1, USBIN ;[0] sample line state - andi x1, USBMASK ;[1] check for se0 - breq nOverflow2 ;[2] - eor x2, x1 ;[3] - bst x2, USBMINUS ;[4] - bld shift, 4 ;[5] - mov x2, shift ;[6] - andi x2, 0x9F ;[7] - breq unstuff4 ;[8] -didunstuff4: - nop2 ;[9][10] - nop ;[11] - -; bit5 - in x2, USBIN ;[0] sample line state - ldi ZH, hi8(usbCrcTableHigh);[1] use the table for the higher byte - eor x1, x2 ;[2] - bst x1, USBMINUS ;[3] - bld shift, 5 ;[4] - mov x1, shift ;[5] - andi x1, 0x3F ;[6] - breq unstuff5 ;[7] -didunstuff5: - lpm x4, Z ;[8] load the higher crc xor-byte and store it for later use - ;[9] lpm needs 3 cycles - ;[10] - ldi ZH, hi8(usbCrcTableLow);[11] load the lower crc xor byte adress - -; bit6 - in x1, USBIN ;[0] sample line state - eor x2, x1 ;[1] - bst x2, USBMINUS ;[2] - bld shift, 6 ;[3] - mov x2, shift ;[4] - andi x2, 0x7E ;[5] - breq unstuff6 ;[6] -didunstuff6: - lpm ZL, Z ;[7] load the lower xor crc byte - ;[8] lpm needs 3 cycles - ;[9] - eor ZL, x3 ;[10] xor the old high crc byte with the low xor-byte - mov x3, x4 ;[11] move the new high order crc value from temp to its destination - -; bit7 - in x2, USBIN ;[0] sample line state - eor x1, x2 ;[1] - bst x1, USBMINUS ;[2] - bld shift, 7 ;[3] now shift holds the complete but inverted data byte - mov x1, shift ;[4] - andi x1, 0xFC ;[5] - breq unstuff7 ;[6] -didunstuff7: - eor x5, shift ;[7] x5 marks all bits which have not been inverted by the unstuffing subs - mov x4, x5 ;[8] keep a copy of the data byte it will be stored during next bit0 - eor ZL, x4 ;[9] feed the actual byte into the crc algorithm - rjmp rxDataStart ;[10] next byte - ;[11] during the reception of the next byte this one will be fed int the crc algorithm - -unstuff4: ;[9] this is the jump delay of rjmp unstuffX - ori shift, 0x10 ;[10] invert the last received bit to prevent furhter unstuffing - andi x5, 0xEF ;[11] mark this bit as inverted (will be corrected before storing shift) - in x2, USBIN ;[0] we have some free cycles so we could check for bit stuffing errors - eor x1, x2 ;[1] x1 and x2 have to be different because the stuff bit is always a zero - andi x1, USBMASK ;[2] mask the interesting bits - breq stuffErr2 ;[3] if the stuff bit is a 1-bit something went wrong - mov x1, x2 ;[4] the next bit expects the last state to be in x1 - nop2 ;[5] - ;[6] - rjmp didunstuff4 ;[7] - ;[8] jump delay of rjmp didunstuffX - -unstuff5: ;[8] this is the jump delay of rjmp unstuffX - nop ;[9] - ori shift, 0x20 ;[10] invert the last received bit to prevent furhter unstuffing - andi x5, 0xDF ;[11] mark this bit as inverted (will be corrected before storing shift) - in x1, USBIN ;[0] we have some free cycles so we could check for bit stuffing errors - eor x2, x1 ;[1] x1 and x2 have to be different because the stuff bit is always a zero - andi x2, USBMASK ;[2] mask the interesting bits - breq stuffErr2 ;[3] if the stuff bit is a 1-bit something went wrong - mov x2, x1 ;[4] the next bit expects the last state to be in x2 - nop ;[5] - rjmp didunstuff5 ;[6] - ;[7] jump delay of rjmp didunstuffX - -unstuff6: ;[7] this is the jump delay of rjmp unstuffX - nop2 ;[8] - ;[9] - ori shift, 0x40 ;[10] invert the last received bit to prevent furhter unstuffing - andi x5, 0xBF ;[11] mark this bit as inverted (will be corrected before storing shift) - in x2, USBIN ;[0] we have some free cycles so we could check for bit stuffing errors - eor x1, x2 ;[1] x1 and x2 have to be different because the stuff bit is always a zero - andi x1, USBMASK ;[2] mask the interesting bits - breq stuffErr2 ;[3] if the stuff bit is a 1-bit something went wrong - mov x1, x2 ;[4] the next bit expects the last state to be in x1 - rjmp didunstuff6 ;[5] - ;[6] jump delay of rjmp didunstuffX - -unstuff7: ;[7] this is the jump delay of rjmp unstuffX - nop ;[8] - nop ;[9] - ori shift, 0x80 ;[10] invert the last received bit to prevent furhter unstuffing - andi x5, 0x7F ;[11] mark this bit as inverted (will be corrected before storing shift) - in x1, USBIN ;[0] we have some free cycles so we could check for bit stuffing errors - eor x2, x1 ;[1] x1 and x2 have to be different because the stuff bit is always a zero - andi x2, USBMASK ;[2] mask the interesting bits - breq stuffErr2 ;[3] if the stuff bit is a 1-bit something went wrong - mov x2, x1 ;[4] the next bit expects the last state to be in x2 - rjmp didunstuff7 ;[5] - ;[6] jump delay of rjmp didunstuff7 - -; local copy of the stuffErr desitnation for the second half of the receiver loop -stuffErr2: - rjmp stuffErr - -;-------------------------------------------------------------------------------------------------------------- -; The crc table follows. It has to be aligned to enable a fast loading of the needed bytes. -; There are two tables of 256 entries each, the low and the high byte table. -; Table values were generated with the following C code: -/* -#include <stdio.h> -int main (int argc, char **argv) -{ - int i, j; - for (i=0; i<512; i++){ - unsigned short crc = i & 0xff; - for(j=0; j<8; j++) crc = (crc >> 1) ^ ((crc & 1) ? 0xa001 : 0); - if((i & 7) == 0) printf("\n.byte "); - printf("0x%02x, ", (i > 0xff ? (crc >> 8) : crc) & 0xff); - if(i == 255) printf("\n"); - } - return 0; -} - -// Use the following algorithm to compute CRC values: -ushort computeCrc(uchar *msg, uchar msgLen) -{ - uchar i; - ushort crc = 0xffff; - for(i = 0; i < msgLen; i++) - crc = usbCrcTable16[lo8(crc) ^ msg[i]] ^ hi8(crc); - return crc; -} -*/ - -.balign 256 -usbCrcTableLow: -.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41 -.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40 -.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40 -.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41 -.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40 -.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41 -.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41 -.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40 -.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40 -.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41 -.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41 -.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40 -.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41 -.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40 -.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40 -.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41 -.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40 -.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41 -.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41 -.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40 -.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41 -.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40 -.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40 -.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41 -.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41 -.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40 -.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40 -.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41 -.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40 -.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41 -.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41 -.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40 - -; .balign 256 -usbCrcTableHigh: -.byte 0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2 -.byte 0xC6, 0x06, 0x07, 0xC7, 0x05, 0xC5, 0xC4, 0x04 -.byte 0xCC, 0x0C, 0x0D, 0xCD, 0x0F, 0xCF, 0xCE, 0x0E -.byte 0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09, 0x08, 0xC8 -.byte 0xD8, 0x18, 0x19, 0xD9, 0x1B, 0xDB, 0xDA, 0x1A -.byte 0x1E, 0xDE, 0xDF, 0x1F, 0xDD, 0x1D, 0x1C, 0xDC -.byte 0x14, 0xD4, 0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6 -.byte 0xD2, 0x12, 0x13, 0xD3, 0x11, 0xD1, 0xD0, 0x10 -.byte 0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF3, 0xF2, 0x32 -.byte 0x36, 0xF6, 0xF7, 0x37, 0xF5, 0x35, 0x34, 0xF4 -.byte 0x3C, 0xFC, 0xFD, 0x3D, 0xFF, 0x3F, 0x3E, 0xFE -.byte 0xFA, 0x3A, 0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38 -.byte 0x28, 0xE8, 0xE9, 0x29, 0xEB, 0x2B, 0x2A, 0xEA -.byte 0xEE, 0x2E, 0x2F, 0xEF, 0x2D, 0xED, 0xEC, 0x2C -.byte 0xE4, 0x24, 0x25, 0xE5, 0x27, 0xE7, 0xE6, 0x26 -.byte 0x22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0 -.byte 0xA0, 0x60, 0x61, 0xA1, 0x63, 0xA3, 0xA2, 0x62 -.byte 0x66, 0xA6, 0xA7, 0x67, 0xA5, 0x65, 0x64, 0xA4 -.byte 0x6C, 0xAC, 0xAD, 0x6D, 0xAF, 0x6F, 0x6E, 0xAE -.byte 0xAA, 0x6A, 0x6B, 0xAB, 0x69, 0xA9, 0xA8, 0x68 -.byte 0x78, 0xB8, 0xB9, 0x79, 0xBB, 0x7B, 0x7A, 0xBA -.byte 0xBE, 0x7E, 0x7F, 0xBF, 0x7D, 0xBD, 0xBC, 0x7C -.byte 0xB4, 0x74, 0x75, 0xB5, 0x77, 0xB7, 0xB6, 0x76 -.byte 0x72, 0xB2, 0xB3, 0x73, 0xB1, 0x71, 0x70, 0xB0 -.byte 0x50, 0x90, 0x91, 0x51, 0x93, 0x53, 0x52, 0x92 -.byte 0x96, 0x56, 0x57, 0x97, 0x55, 0x95, 0x94, 0x54 -.byte 0x9C, 0x5C, 0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E -.byte 0x5A, 0x9A, 0x9B, 0x5B, 0x99, 0x59, 0x58, 0x98 -.byte 0x88, 0x48, 0x49, 0x89, 0x4B, 0x8B, 0x8A, 0x4A -.byte 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4D, 0x4C, 0x8C -.byte 0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86 -.byte 0x82, 0x42, 0x43, 0x83, 0x41, 0x81, 0x80, 0x40 - |