diff options
author | Ryan Caltabiano <rcalt2vt@gmail.com> | 2019-04-15 22:32:57 -0500 |
---|---|---|
committer | skullydazed <skullydazed@users.noreply.github.com> | 2019-04-20 08:05:10 -0700 |
commit | 0a645225b9c863a106921185a6c2e0c340f10694 (patch) | |
tree | 2bf8c295650e54fb4548a7ac4d348ccfc8caa307 /drivers/oled/oled_driver.c | |
parent | b5cb5ec6ddb15cfe336b835055f546f72d440a66 (diff) |
OLED Driver Feature
Diffstat (limited to 'drivers/oled/oled_driver.c')
-rw-r--r-- | drivers/oled/oled_driver.c | 528 |
1 files changed, 528 insertions, 0 deletions
diff --git a/drivers/oled/oled_driver.c b/drivers/oled/oled_driver.c new file mode 100644 index 0000000000..aa025d7a4c --- /dev/null +++ b/drivers/oled/oled_driver.c @@ -0,0 +1,528 @@ +/* +Copyright 2019 Ryan Caltabiano <https://github.com/XScorpion2> + +This program is free software: you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation, either version 2 of the License, or +(at your option) any later version. + +This program is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with this program. If not, see <http://www.gnu.org/licenses/>. +*/ +#include "i2c_master.h" +#include "oled_driver.h" +#include OLED_FONT_H +#include "timer.h" +#include "print.h" + +#include <string.h> + +#if defined(__AVR__) + #include <avr/io.h> + #include <avr/pgmspace.h> +#elif defined(ESP8266) + #include <pgmspace.h> +#else // defined(ESP8266) + #define PROGMEM + #define memcpy_P(des, src, len) memcpy(des, src, len) +#endif // defined(__AVR__) + +// Used commands from spec sheet: https://cdn-shop.adafruit.com/datasheets/SSD1306.pdf +// Fundamental Commands +#define CONTRAST 0x81 +#define DISPLAY_ALL_ON 0xA5 +#define DISPLAY_ALL_ON_RESUME 0xA4 +#define NORMAL_DISPLAY 0xA6 +#define DISPLAY_ON 0xAF +#define DISPLAY_OFF 0xAE + +// Scrolling Commands +#define ACTIVATE_SCROLL 0x2F +#define DEACTIVATE_SCROLL 0x2E +#define SCROLL_RIGHT 0x26 +#define SCROLL_LEFT 0x27 +#define SCROLL_RIGHT_UP 0x29 +#define SCROLL_LEFT_UP 0x2A + +// Addressing Setting Commands +#define MEMORY_MODE 0x20 +#define COLUMN_ADDR 0x21 +#define PAGE_ADDR 0x22 + +// Hardware Configuration Commands +#define DISPLAY_START_LINE 0x40 +#define SEGMENT_REMAP 0xA0 +#define SEGMENT_REMAP_INV 0xA1 +#define MULTIPLEX_RATIO 0xA8 +#define COM_SCAN_INC 0xC0 +#define COM_SCAN_DEC 0xC8 +#define DISPLAY_OFFSET 0xD3 +#define COM_PINS 0xDA + +// Timing & Driving Commands +#define DISPLAY_CLOCK 0xD5 +#define PRE_CHARGE_PERIOD 0xD9 +#define VCOM_DETECT 0xDB + +// Charge Pump Commands +#define CHARGE_PUMP 0x8D + +// Misc defines +#define OLED_TIMEOUT 60000 +#define OLED_BLOCK_COUNT (sizeof(OLED_BLOCK_TYPE) * 8) +#define OLED_BLOCK_SIZE (OLED_MATRIX_SIZE / OLED_BLOCK_COUNT) + +// i2c defines +#define I2C_CMD 0x00 +#define I2C_DATA 0x40 +#if defined(__AVR__) + // already defined on ARM + #define I2C_TIMEOUT 100 + #define I2C_TRANSMIT_P(data) i2c_transmit_P((OLED_DISPLAY_ADDRESS << 1), &data[0], sizeof(data), I2C_TIMEOUT) +#else // defined(__AVR__) + #define I2C_TRANSMIT_P(data) i2c_transmit((OLED_DISPLAY_ADDRESS << 1), &data[0], sizeof(data), I2C_TIMEOUT) +#endif // defined(__AVR__) +#define I2C_TRANSMIT(data) i2c_transmit((OLED_DISPLAY_ADDRESS << 1), &data[0], sizeof(data), I2C_TIMEOUT) +#define I2C_WRITE_REG(mode, data, size) i2c_writeReg((OLED_DISPLAY_ADDRESS << 1), mode, data, size, I2C_TIMEOUT) + +#define HAS_FLAGS(bits, flags) ((bits & flags) == flags) + +// Display buffer's is the same as the OLED memory layout +// this is so we don't end up with rounding errors with +// parts of the display unusable or don't get cleared correctly +// and also allows for drawing & inverting +uint8_t oled_buffer[OLED_MATRIX_SIZE]; +uint8_t* oled_cursor; +OLED_BLOCK_TYPE oled_dirty = 0; +bool oled_initialized = false; +bool oled_active = false; +bool oled_scrolling = false; +uint8_t oled_rotation = 0; +uint8_t oled_rotation_width = 0; +#if !defined(OLED_DISABLE_TIMEOUT) + uint16_t oled_last_activity; +#endif + +// Internal variables to reduce math instructions + +#if defined(__AVR__) +// identical to i2c_transmit, but for PROGMEM since all initialization is in PROGMEM arrays currently +// probably should move this into i2c_master... +static i2c_status_t i2c_transmit_P(uint8_t address, const uint8_t* data, uint16_t length, uint16_t timeout) { + i2c_status_t status = i2c_start(address | I2C_WRITE, timeout); + + for (uint16_t i = 0; i < length && status >= 0; i++) { + status = i2c_write(pgm_read_byte((const char*)data++), timeout); + if (status) break; + } + + i2c_stop(); + + return status; +} +#endif + +// Flips the rendering bits for a character at the current cursor position +static void InvertCharacter(uint8_t *cursor) +{ + const uint8_t *end = cursor + OLED_FONT_WIDTH; + while (cursor < end) { + *cursor = ~(*cursor); + cursor++; + } +} + +bool oled_init(uint8_t rotation) { + oled_rotation = oled_init_user(rotation); + if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) { + oled_rotation_width = OLED_DISPLAY_WIDTH; + } else { + oled_rotation_width = OLED_DISPLAY_HEIGHT; + } + i2c_init(); + + static const uint8_t PROGMEM display_setup1[] = { + I2C_CMD, + DISPLAY_OFF, + DISPLAY_CLOCK, 0x80, + MULTIPLEX_RATIO, OLED_DISPLAY_HEIGHT - 1, + DISPLAY_OFFSET, 0x00, + DISPLAY_START_LINE | 0x00, + CHARGE_PUMP, 0x14, + MEMORY_MODE, 0x00, }; // Horizontal addressing mode + if (I2C_TRANSMIT_P(display_setup1) != I2C_STATUS_SUCCESS) { + print("oled_init cmd set 1 failed\n"); + return false; + } + + if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_180)) { + static const uint8_t PROGMEM display_normal[] = { + I2C_CMD, + SEGMENT_REMAP_INV, + COM_SCAN_DEC }; + if (I2C_TRANSMIT_P(display_normal) != I2C_STATUS_SUCCESS) { + print("oled_init cmd normal rotation failed\n"); + return false; + } + } else { + static const uint8_t PROGMEM display_flipped[] = { + I2C_CMD, + SEGMENT_REMAP, + COM_SCAN_INC }; + if (I2C_TRANSMIT_P(display_flipped) != I2C_STATUS_SUCCESS) { + print("display_flipped failed\n"); + return false; + } + } + + static const uint8_t PROGMEM display_setup2[] = { + I2C_CMD, + COM_PINS, 0x02, + CONTRAST, 0x8F, + PRE_CHARGE_PERIOD, 0xF1, + VCOM_DETECT, 0x40, + DISPLAY_ALL_ON_RESUME, + NORMAL_DISPLAY, + DEACTIVATE_SCROLL, + DISPLAY_ON }; + if (I2C_TRANSMIT_P(display_setup2) != I2C_STATUS_SUCCESS) { + print("display_setup2 failed\n"); + return false; + } + + oled_clear(); + oled_initialized = true; + oled_active = true; + oled_scrolling = false; + return true; +} + +__attribute__((weak)) +uint8_t oled_init_user(uint8_t rotation) { + return rotation; +} + +void oled_clear(void) { + memset(oled_buffer, 0, sizeof(oled_buffer)); + oled_cursor = &oled_buffer[0]; + oled_dirty = -1; // -1 will be max value as long as display_dirty is unsigned type +} + +static void calc_bounds(uint8_t update_start, uint8_t* cmd_array) +{ + cmd_array[1] = OLED_BLOCK_SIZE * update_start % OLED_DISPLAY_WIDTH; + cmd_array[4] = OLED_BLOCK_SIZE * update_start / OLED_DISPLAY_WIDTH; + cmd_array[2] = (OLED_BLOCK_SIZE + OLED_DISPLAY_WIDTH - 1) % OLED_DISPLAY_WIDTH + cmd_array[1]; + cmd_array[5] = (OLED_BLOCK_SIZE + OLED_DISPLAY_WIDTH - 1) / OLED_DISPLAY_WIDTH - 1; +} + +static void calc_bounds_90(uint8_t update_start, uint8_t* cmd_array) +{ + cmd_array[1] = OLED_BLOCK_SIZE * update_start / OLED_DISPLAY_HEIGHT * 8; + cmd_array[4] = OLED_BLOCK_SIZE * update_start % OLED_DISPLAY_HEIGHT; + cmd_array[2] = (OLED_BLOCK_SIZE + OLED_DISPLAY_HEIGHT - 1) / OLED_DISPLAY_HEIGHT * 8 - 1 + cmd_array[1];; + cmd_array[5] = (OLED_BLOCK_SIZE + OLED_DISPLAY_HEIGHT - 1) % OLED_DISPLAY_HEIGHT / 8; +} + +uint8_t crot(uint8_t a, int8_t n) +{ + const uint8_t mask = 0x7; + n &= mask; + return a << n | a >> (-n & mask); +} + +static void rotate_90(const uint8_t* src, uint8_t* dest) +{ + for (uint8_t i = 0, shift = 7; i < 8; ++i, --shift) { + uint8_t selector = (1 << i); + for (uint8_t j = 0; j < 8; ++j) { + dest[i] |= crot(src[j] & selector, shift - (int8_t)j); + } + } +} + +void oled_render(void) { + // Do we have work to do? + if (!oled_dirty || oled_scrolling) { + return; + } + + // Find first dirty block + uint8_t update_start = 0; + while (!(oled_dirty & (1 << update_start))) { ++update_start; } + + // Set column & page position + static uint8_t display_start[] = { + I2C_CMD, + COLUMN_ADDR, 0, OLED_DISPLAY_WIDTH - 1, + PAGE_ADDR, 0, OLED_DISPLAY_HEIGHT / 8 - 1 }; + if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) { + calc_bounds(update_start, &display_start[1]); // Offset from I2C_CMD byte at the start + } else { + calc_bounds_90(update_start, &display_start[1]); // Offset from I2C_CMD byte at the start + } + + // Send column & page position + if (I2C_TRANSMIT(display_start) != I2C_STATUS_SUCCESS) { + print("oled_render offset command failed\n"); + return; + } + + if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) { + // Send render data chunk as is + if (I2C_WRITE_REG(I2C_DATA, &oled_buffer[OLED_BLOCK_SIZE * update_start], OLED_BLOCK_SIZE) != I2C_STATUS_SUCCESS) { + print("oled_render data failed\n"); + return; + } + } else { + // Rotate the render chunks + const static uint8_t source_map[] = OLED_SOURCE_MAP; + const static uint8_t target_map[] = OLED_TARGET_MAP; + + static uint8_t temp_buffer[OLED_BLOCK_SIZE]; + memset(temp_buffer, 0, sizeof(temp_buffer)); + for(uint8_t i = 0; i < sizeof(source_map); ++i) { + rotate_90(&oled_buffer[OLED_BLOCK_SIZE * update_start + source_map[i]], &temp_buffer[target_map[i]]); + } + + // Send render data chunk after rotating + if (I2C_WRITE_REG(I2C_DATA, &temp_buffer[0], OLED_BLOCK_SIZE) != I2C_STATUS_SUCCESS) { + print("oled_render data failed\n"); + return; + } + } + + // Turn on display if it is off + oled_on(); + + // Clear dirty flag + oled_dirty &= ~(1 << update_start); +} + +void oled_set_cursor(uint8_t col, uint8_t line) { + uint16_t index = line * oled_rotation_width + col * OLED_FONT_WIDTH; + + // Out of bounds? + if (index >= OLED_MATRIX_SIZE) { + index = 0; + } + + oled_cursor = &oled_buffer[index]; +} + +void oled_advance_page(bool clearPageRemainder) { + uint16_t index = oled_cursor - &oled_buffer[0]; + uint8_t remaining = oled_rotation_width - (index % oled_rotation_width); + + if (clearPageRemainder) { + // Remaining Char count + remaining = remaining / OLED_FONT_WIDTH; + + // Write empty character until next line + while (remaining--) + oled_write_char(' ', false); + } else { + // Next page index out of bounds? + if (index + remaining >= OLED_MATRIX_SIZE) { + index = 0; + remaining = 0; + } + + oled_cursor = &oled_buffer[index + remaining]; + } +} + +void oled_advance_char(void) { + uint16_t nextIndex = oled_cursor - &oled_buffer[0] + OLED_FONT_WIDTH; + uint8_t remainingSpace = oled_rotation_width - (nextIndex % oled_rotation_width); + + // Do we have enough space on the current line for the next character + if (remainingSpace < OLED_FONT_WIDTH) { + nextIndex += remainingSpace; + } + + // Did we go out of bounds + if (nextIndex >= OLED_MATRIX_SIZE) { + nextIndex = 0; + } + + // Update cursor position + oled_cursor = &oled_buffer[nextIndex]; +} + +// Main handler that writes character data to the display buffer +void oled_write_char(const char data, bool invert) { + // Advance to the next line if newline + if (data == '\n') { + // Old source wrote ' ' until end of line... + oled_advance_page(true); + return; + } + + // copy the current render buffer to check for dirty after + static uint8_t oled_temp_buffer[OLED_FONT_WIDTH]; + memcpy(&oled_temp_buffer, oled_cursor, OLED_FONT_WIDTH); + + // set the reder buffer data + uint8_t cast_data = (uint8_t)data; // font based on unsigned type for index + if (cast_data < OLED_FONT_START || cast_data > OLED_FONT_END) { + memset(oled_cursor, 0x00, OLED_FONT_WIDTH); + } else { + const uint8_t *glyph = &font[(cast_data - OLED_FONT_START) * OLED_FONT_WIDTH]; + memcpy_P(oled_cursor, glyph, OLED_FONT_WIDTH); + } + + // Invert if needed + if (invert) { + InvertCharacter(oled_cursor); + } + + // Dirty check + if (memcmp(&oled_temp_buffer, oled_cursor, OLED_FONT_WIDTH)) { + oled_dirty |= (1 << ((oled_cursor - &oled_buffer[0]) / OLED_BLOCK_SIZE)); + } + + // Finally move to the next char + oled_advance_char(); +} + +void oled_write(const char *data, bool invert) { + const char *end = data + strlen(data); + while (data < end) { + oled_write_char(*data, invert); + data++; + } +} + +void oled_write_ln(const char *data, bool invert) { + oled_write(data, invert); + oled_advance_page(true); +} + +#if defined(__AVR__) +void oled_write_P(const char *data, bool invert) { + uint8_t c = pgm_read_byte(data); + while (c != 0) { + oled_write_char(c, invert); + c = pgm_read_byte(++data); + } +} + +void oled_write_ln_P(const char *data, bool invert) { + oled_write_P(data, invert); + oled_advance_page(true); +} +#endif // defined(__AVR__) + +bool oled_on(void) { +#if !defined(OLED_DISABLE_TIMEOUT) + oled_last_activity = timer_read(); +#endif + + static const uint8_t PROGMEM display_on[] = { I2C_CMD, DISPLAY_ON }; + if (!oled_active) { + if (I2C_TRANSMIT_P(display_on) != I2C_STATUS_SUCCESS) { + print("oled_on cmd failed\n"); + return oled_active; + } + oled_active = true; + } + return oled_active; +} + +bool oled_off(void) { + static const uint8_t PROGMEM display_off[] = { I2C_CMD, DISPLAY_OFF }; + if (oled_active) { + if (I2C_TRANSMIT_P(display_off) != I2C_STATUS_SUCCESS) { + print("oled_off cmd failed\n"); + return oled_active; + } + oled_active = false; + } + return !oled_active; +} + +bool oled_scroll_right(void) { + // Dont enable scrolling if we need to update the display + // This prevents scrolling of bad data from starting the scroll too early after init + if (!oled_dirty && !oled_scrolling) { + static const uint8_t PROGMEM display_scroll_right[] = { + I2C_CMD, SCROLL_RIGHT, 0x00, 0x00, 0x00, 0x0F, 0x00, 0xFF, ACTIVATE_SCROLL }; + if (I2C_TRANSMIT_P(display_scroll_right) != I2C_STATUS_SUCCESS) { + print("oled_scroll_right cmd failed\n"); + return oled_scrolling; + } + oled_scrolling = true; + } + return oled_scrolling; +} + +bool oled_scroll_left(void) { + // Dont enable scrolling if we need to update the display + // This prevents scrolling of bad data from starting the scroll too early after init + if (!oled_dirty && !oled_scrolling) { + static const uint8_t PROGMEM display_scroll_left[] = { + I2C_CMD, SCROLL_LEFT, 0x00, 0x00, 0x00, 0x0F, 0x00, 0xFF, ACTIVATE_SCROLL }; + if (I2C_TRANSMIT_P(display_scroll_left) != I2C_STATUS_SUCCESS) { + print("oled_scroll_left cmd failed\n"); + return oled_scrolling; + } + oled_scrolling = true; + } + return oled_scrolling; +} + +bool oled_scroll_off(void) { + if (oled_scrolling) { + static const uint8_t PROGMEM display_scroll_off[] = { I2C_CMD, DEACTIVATE_SCROLL }; + if (I2C_TRANSMIT_P(display_scroll_off) != I2C_STATUS_SUCCESS) { + print("oled_scroll_off cmd failed\n"); + return oled_scrolling; + } + oled_scrolling = false; + } + return !oled_scrolling; +} + +uint8_t oled_max_chars(void) { + if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) { + return OLED_DISPLAY_WIDTH / OLED_FONT_WIDTH; + } + return OLED_DISPLAY_HEIGHT / OLED_FONT_WIDTH; +} + +uint8_t oled_max_lines(void) { + if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) { + return OLED_DISPLAY_HEIGHT / OLED_FONT_HEIGHT; + } + return OLED_DISPLAY_WIDTH / OLED_FONT_HEIGHT; +} + +void oled_task(void) { + if (!oled_initialized) { + return; + } + + oled_set_cursor(0, 0); + + oled_task_user(); + + // Smart render system, no need to check for dirty + oled_render(); + + // Display timeout check +#if !defined(OLED_DISABLE_TIMEOUT) + if (oled_active && timer_elapsed(oled_last_activity) > OLED_TIMEOUT) { + oled_off(); + } +#endif +} + +__attribute__((weak)) +void oled_task_user(void) { +} |