1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
|
#!/usr/bin/python2
mod_license = """
/*
* Copyright (C) 2011-2016 Sylvain Munaut <tnt@246tNt.com>
* Copyright (C) 2016 sysmocom s.f.m.c. GmbH
*
* All Rights Reserved
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
"""
import sys, os, math, argparse
from functools import reduce
import conv_codes_gsm
class ConvolutionalCode(object):
def __init__(self, block_len, polys, name,
description = None, puncture = [], term_type = None,
vec_in = None, vec_out = None):
# Save simple params
self.block_len = block_len
self.k = 1
self.puncture = puncture
self.rate_inv = len(polys)
self.term_type = term_type
self.vec_in = vec_in
self.vec_out = vec_out
# Infos
self.name = name
self.description = description
# Handle polynomials (and check for recursion)
self.polys = [(1, 1) if x[0] == x[1] else x for x in polys]
# Determine the polynomial degree
for (x, y) in polys:
self.k = max(self.k, int(math.floor(math.log(max(x, y), 2))))
self.k = self.k + 1
self.poly_divider = 1
rp = [x[1] for x in self.polys if x[1] != 1]
if rp:
if not all([x == rp[0] for x in rp]):
raise ValueError("Bad polynomials: "
"Can't have multiple different divider polynomials!")
if not all([x[0] == 1 for x in polys if x[1] == 1]):
raise ValueError("Bad polynomials: "
"Can't have a '1' divider with a non '1' dividend "
"in a recursive code")
self.poly_divider = rp[0]
@property
def recursive(self):
return self.poly_divider != 1
@property
def _state_mask(self):
return (1 << (self.k - 1)) - 1
def next_state(self, state, bit):
nb = combine(
(state << 1) | bit,
self.poly_divider,
self.k,
)
return ((state << 1) | nb) & self._state_mask
def next_term_state(self, state):
return (state << 1) & self._state_mask
def next_output(self, state, bit, ns = None):
# Next state bit
if ns is None:
ns = self.next_state(state, bit)
src = (ns & 1) | (state << 1)
# Scan polynomials
rv = []
for p_n, p_d in self.polys:
if self.recursive and p_d == 1:
# No choice ... (systematic output in recursive case)
o = bit
else:
o = combine(src, p_n, self.k)
rv.append(o)
return rv
def next_term_output(self, state, ns = None):
# Next state bit
if ns is None:
ns = self.next_term_state(state)
src = (ns & 1) | (state << 1)
# Scan polynomials
rv = []
for p_n, p_d in self.polys:
if self.recursive and p_d == 1:
# Systematic output are replaced when in 'termination' mode
o = combine(src, self.poly_divider, self.k)
else:
o = combine(src, p_n, self.k)
rv.append(o)
return rv
def next(self, state, bit):
ns = self.next_state(state, bit)
nb = self.next_output(state, bit, ns = ns)
return ns, nb
def next_term(self, state):
ns = self.next_term_state(state)
nb = self.next_term_output(state, ns = ns)
return ns, nb
def _print_term(self, fi, num_states, pack = False):
items = []
for state in range(num_states):
if pack:
x = pack(self.next_term_output(state))
else:
x = self.next_term_state(state)
items.append(x)
# Up to 12 numbers should be placed per line
print_formatted(items, "%3d, ", 12, fi)
def _print_x(self, fi, num_states, pack = False):
items = []
for state in range(num_states):
if pack:
x0 = pack(self.next_output(state, 0))
x1 = pack(self.next_output(state, 1))
else:
x0 = self.next_state(state, 0)
x1 = self.next_state(state, 1)
items.append((x0, x1))
# Up to 4 blocks should be placed per line
print_formatted(items, "{ %2d, %2d }, ", 4, fi)
def _print_puncture(self, fi):
# Up to 12 numbers should be placed per line
print_formatted(self.puncture, "%3d, ", 12, fi)
def print_description(self, fi, brief = False):
if brief is True:
fi.write("/*! structure describing %s.\n"
% self.description[0])
for line in self.description[1:]:
fi.write(" * %s\n" % line)
else:
fi.write("/**\n")
for line in self.description:
fi.write(" * %s\n" % line)
fi.write(" */\n")
def print_state_and_output(self, fi):
pack = lambda n: \
sum([x << (self.rate_inv - i - 1) for i, x in enumerate(n)])
num_states = 1 << (self.k - 1)
fi.write("static const uint8_t %s_state[][2] = {\n" % self.name)
self._print_x(fi, num_states)
fi.write("};\n\n")
fi.write("static const uint8_t %s_output[][2] = {\n" % self.name)
self._print_x(fi, num_states, pack)
fi.write("};\n\n")
if self.recursive:
fi.write("static const uint8_t %s_term_state[] = {\n" % self.name)
self._print_term(fi, num_states)
fi.write("};\n\n")
fi.write("static const uint8_t %s_term_output[] = {\n" % self.name)
self._print_term(fi, num_states, pack)
fi.write("};\n\n")
def gen_tables(self, pref, fi, shared_tables = None):
# Do not print shared tables
if shared_tables is None:
self.print_state_and_output(fi)
table_pref = self.name
else:
table_pref = shared_tables
if len(self.puncture):
fi.write("static const int %s_puncture[] = {\n" % self.name)
self._print_puncture(fi)
fi.write("};\n\n")
# Write description as a multi-line comment
if self.description is not None:
self.print_description(fi)
# Print a final convolutional code definition
fi.write("const struct osmo_conv_code %s_%s = {\n" % (pref, self.name))
fi.write("\t.N = %d,\n" % self.rate_inv)
fi.write("\t.K = %d,\n" % self.k)
fi.write("\t.len = %d,\n" % self.block_len)
fi.write("\t.next_output = %s_output,\n" % table_pref)
fi.write("\t.next_state = %s_state,\n" % table_pref)
if self.term_type is not None:
fi.write("\t.term = %s,\n" % self.term_type)
if self.recursive:
fi.write("\t.next_term_output = %s_term_output,\n" % table_pref)
fi.write("\t.next_term_state = %s_term_state,\n" % table_pref)
if len(self.puncture):
fi.write("\t.puncture = %s_puncture,\n" % self.name)
fi.write("};\n\n")
def calc_out_len(self):
out_len = self.block_len * self.rate_inv
# By default CONV_TERM_FLUSH
if self.term_type is None:
out_len += self.rate_inv * (self.k - 1)
if len(self.puncture):
out_len -= len(self.puncture) - 1
return out_len
def gen_test_vector(self, fi, prefix):
code_name = "%s_%s" % (prefix, self.name)
fi.write("\t{\n")
fi.write("\t\t.name = \"%s\",\n" % code_name)
fi.write("\t\t.code = &%s,\n" % code_name)
fi.write("\t\t.in_len = %d,\n" % self.block_len)
fi.write("\t\t.out_len = %d,\n" % self.calc_out_len())
# Print pre computed vectors if preset
if self.vec_in is not None and self.vec_out is not None:
fi.write("\t\t.has_vec = 1,\n")
fi.write("\t\t.vec_in = {\n")
print_formatted(self.vec_in, "0x%02x, ", 8, fi, indent = "\t\t\t")
fi.write("\t\t},\n")
fi.write("\t\t.vec_out = {\n")
print_formatted(self.vec_out, "0x%02x, ", 8, fi, indent = "\t\t\t")
fi.write("\t\t},\n")
else:
fi.write("\t\t.has_vec = 0,\n")
fi.write("\t\t.vec_in = { },\n")
fi.write("\t\t.vec_out = { },\n")
fi.write("\t},\n")
poly = lambda *args: sum([(1 << x) for x in args])
def combine(src, sel, nb):
x = src & sel
fn_xor = lambda x, y: x ^ y
return reduce(fn_xor, [(x >> n) & 1 for n in range(nb)])
def print_formatted(items, format, count, fi):
counter = 0
# Print initial indent
fi.write("\t")
for item in items:
if counter > 0 and counter % count == 0:
fi.write("\n\t")
fi.write(format % item)
counter += 1
fi.write("\n")
def print_shared(fi, shared_polys):
for (name, polys) in shared_polys.items():
# HACK
code = ConvolutionalCode(0, polys, name = name)
code.print_state_and_output(fi)
def open_for_writing(parent_dir, base_name):
path = os.path.join(parent_dir, base_name)
if not os.path.isdir(parent_dir):
os.makedirs(parent_dir)
return open(path, 'w')
def generate_codes(codes, path, prefix, name):
# Open a new file for writing
f = open_for_writing(path, name)
f.write(mod_license + "\n")
f.write("#include <stdint.h>\n")
f.write("#include <osmocom/core/conv.h>\n\n")
sys.stderr.write("Generating convolutional codes...\n")
# Print shared tables first
if hasattr(codes, "shared_polys"):
print_shared(f, codes.shared_polys)
# Generate the tables one by one
for code in codes.conv_codes:
sys.stderr.write("Generate '%s' definition\n" % code.name)
# Check whether shared polynomials are used
shared = None
if hasattr(codes, "shared_polys"):
for (name, polys) in codes.shared_polys.items():
if code.polys == polys:
shared = name
break
code.gen_tables(prefix, f, shared_tables = shared)
def generate_vectors(codes, path, prefix, name, inc = None):
# Open a new file for writing
f = open_for_writing(path, name)
f.write(mod_license + "\n")
# Print includes
if inc is not None:
for item in inc:
f.write("%s\n" % item)
f.write("#include <osmocom/core/conv.h>\n")
f.write("#include \"conv.h\"\n\n")
sys.stderr.write("Generating test vectors...\n")
vec_count = len(codes.conv_codes)
f.write("const int %s_vectors_len = %d;\n\n"
% (prefix, vec_count))
f.write("const struct conv_test_vector %s_vectors[%d] = {\n"
% (prefix, vec_count))
# Generate the vectors one by one
for code in codes.conv_codes:
sys.stderr.write("Generate '%s' test vector\n" % code.name)
code.gen_test_vector(f, prefix)
f.write("};\n")
def generate_header(codes, path, prefix, name, description = None):
# Open a new file for writing
f = open_for_writing(path, name)
# Print license and includes
f.write(mod_license + "\n")
f.write("#pragma once\n\n")
f.write("#include <stdint.h>\n")
f.write("#include <osmocom/core/conv.h>\n\n")
# Print general file description if preset
if description is not None:
f.write("/*! \\file %s.h\n" % prefix)
f.write(" * %s\n" % description)
f.write(" */\n\n")
sys.stderr.write("Generating header file...\n")
# Generate declarations one by one
for code in codes.conv_codes:
sys.stderr.write("Generate '%s' declaration\n" % code.name)
code.print_description(f, True)
f.write("extern const struct osmo_conv_code %s_%s;\n\n"
% (prefix, code.name))
def parse_argv():
parser = argparse.ArgumentParser()
# Positional arguments
parser.add_argument("action",
help = "what to generate",
choices = ["gen_codes", "gen_vectors", "gen_header"])
parser.add_argument("family",
help = "convolutional code family",
choices = ["gsm"])
# Optional arguments
parser.add_argument("-p", "--prefix",
help = "internal naming prefix")
parser.add_argument("-n", "--target-name",
help = "target name for generated file")
parser.add_argument("-P", "--target-path",
help = "target path for generated file")
return parser.parse_args()
if __name__ == '__main__':
# Parse and verify arguments
argv = parse_argv()
path = argv.target_path or os.getcwd()
inc = None
# Determine convolutional code family
if argv.family == "gsm":
codes = conv_codes_gsm
prefix = argv.prefix or "gsm0503"
inc = [ "#include <osmocom/gsm/gsm0503.h>" ]
# What to generate?
if argv.action == "gen_codes":
name = argv.target_name or prefix + "_conv.c"
generate_codes(codes, path, prefix, name)
elif argv.action == "gen_vectors":
name = argv.target_name or prefix + "_test_vectors.c"
generate_vectors(codes, path, prefix, name, inc)
elif argv.action == "gen_header":
name = argv.target_name or prefix + ".h"
generate_header(codes, path, prefix, name)
sys.stderr.write("Generation complete.\n")
|