summaryrefslogtreecommitdiffstats
path: root/src/gsm/gsm_utils.c
blob: 8b4b55866a500f53b2c21a9f4e7e20f7a61dd199 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
/*! \file gsm_utils.c */
/*
 * (C) 2008 by Daniel Willmann <daniel@totalueberwachung.de>
 * (C) 2009,2013 by Holger Hans Peter Freyther <zecke@selfish.org>
 * (C) 2009-2010 by Harald Welte <laforge@gnumonks.org>
 * (C) 2010-2012 by Nico Golde <nico@ngolde.de>
 *
 * All Rights Reserved
 *
 * SPDX-License-Identifier: GPL-2.0+
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 */

/*! \mainpage libosmogsm Documentation
 *
 * \section sec_intro Introduction
 * This library is a collection of common code used in various
 * GSM related sub-projects inside the Osmocom family of projects.  It
 * includes A5/1 and A5/2 ciphers, COMP128v1, a LAPDm implementation,
 * a GSM TLV parser, SMS utility routines as well as
 * protocol definitions for a series of protocols:
 * 	* Um L2 (04.06)
 * 	* Um L3 (04.08)
 * 	* A-bis RSL (08.58)
 * 	* A-bis OML (08.59, 12.21)
 * 	* A (08.08)
 * \n\n
 * Please note that C language projects inside Osmocom are typically
 * single-threaded event-loop state machine designs.  As such,
 * routines in libosmogsm are not thread-safe.  If you must use them in
 * a multi-threaded context, you have to add your own locking.
 *
 * libosmogsm is developed as part of the Osmocom (Open Source Mobile
 * Communications) project, a community-based, collaborative development
 * project to create Free and Open Source implementations of mobile
 * communications systems.  For more information about Osmocom, please
 * see https://osmocom.org/
 *
 * \section sec_copyright Copyright and License
 * Copyright © 2008-2011 - Harald Welte, Holger Freyther and contributors\n
 * All rights reserved. \n\n
 * The source code of libosmogsm is licensed under the terms of the GNU
 * General Public License as published by the Free Software Foundation;
 * either version 2 of the License, or (at your option) any later
 * version.\n
 * See <http://www.gnu.org/licenses/> or COPYING included in the source
 * code package istelf.\n
 * The information detailed here is provided AS IS with NO WARRANTY OF
 * ANY KIND, INCLUDING THE WARRANTY OF DESIGN, MERCHANTABILITY AND
 * FITNESS FOR A PARTICULAR PURPOSE.
 * \n\n
 *
 * \section sec_tracker Homepage + Issue Tracker
 * libosmogsm is distributed as part of libosmocore and shares its
 * project page at http://osmocom.org/projects/libosmocore
 *
 * An Issue Tracker can be found at
 * https://osmocom.org/projects/libosmocore/issues
 *
 * \section sec_contact Contact and Support
 * Community-based support is available at the OpenBSC mailing list
 * <http://lists.osmocom.org/mailman/listinfo/openbsc>\n
 * Commercial support options available upon request from
 * <http://sysmocom.de/>
 */

//#include <openbsc/gsm_data.h>
#include <osmocom/core/utils.h>
#include <osmocom/core/bitvec.h>
#include <osmocom/gsm/gsm_utils.h>
#include <osmocom/gsm/meas_rep.h>
#include <osmocom/gsm/protocol/gsm_04_08.h>

#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <stdbool.h>
#include <stdio.h>
#include <errno.h>
#include <ctype.h>
#include <inttypes.h>
#include <time.h>
#include <unistd.h>

#include "../../config.h"

/* FIXME: this can be removed once we bump glibc requirements to 2.25: */
#if defined(__GLIBC__) && (__GLIBC__ >= 2) && (__GLIBC_MINOR__ >= 25)
#include <sys/random.h>
#elif HAVE_DECL_SYS_GETRANDOM
#include <sys/syscall.h>
#ifndef GRND_NONBLOCK
#define GRND_NONBLOCK 0x0001
#endif
#endif

#if (USE_GNUTLS)
#pragma message ("including GnuTLS for getrandom fallback.")
#include <gnutls/gnutls.h>
#include <gnutls/crypto.h>

/* gnutls < 3.3.0 requires global init.
 * gnutls >= 3.3.0 does it automatic.
 * It doesn't hurt calling it twice,
 * as long it's not done at the same time (threads).
 */
__attribute__((constructor))
static void on_dso_load_gnutls(void)
{
	if (!gnutls_check_version("3.3.0"))
		gnutls_global_init();
}

__attribute__((destructor))
static void on_dso_unload_gnutls(void)
{
	if (!gnutls_check_version("3.3.0"))
		gnutls_global_deinit();
}
#endif

/* ETSI GSM 03.38 6.2.1 and 6.2.1.1 default alphabet
 * Greek symbols at hex positions 0x10 and 0x12-0x1a
 * left out as they can't be handled with a char and
 * since most phones don't display or write these
 * characters this would only needlessly make the code
 * more complex.
 *
 * Note that this table contains the latin1->7bit mapping _and_ has
 * been merged with the reverse mapping (7bit->latin1) for the
 * extended characters at offset 0x7f.
 */
static unsigned char gsm_7bit_alphabet[] = {
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x0a, 0xff, 0xff, 0x0d, 0xff,
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
	0xff, 0xff, 0x20, 0x21, 0x22, 0x23, 0x02, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b, 0x2c,
	0x2d, 0x2e, 0x2f, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x3b,
	0x3c, 0x3d, 0x3e, 0x3f, 0x00, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4a,
	0x4b, 0x4c, 0x4d, 0x4e, 0x4f, 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59,
	0x5a, 0x3c, 0x2f, 0x3e, 0x14, 0x11, 0xff, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
	0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
	0x78, 0x79, 0x7a, 0x28, 0x40, 0x29, 0x3d, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
	0xff, 0xff, 0x0c, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x5e, 0xff, 0xff,
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x40, 0xff, 0x01, 0xff,
	0x03, 0xff, 0x7b, 0x7d, 0xff, 0xff, 0xff, 0xff, 0xff, 0x5c, 0xff, 0xff, 0xff, 0xff, 0xff,
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x5b, 0x7e, 0x5d, 0xff, 0x7c, 0xff, 0xff, 0xff,
	0xff, 0x5b, 0x0e, 0x1c, 0x09, 0xff, 0x1f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x5d,
	0xff, 0xff, 0xff, 0xff, 0x5c, 0xff, 0x0b, 0xff, 0xff, 0xff, 0x5e, 0xff, 0xff, 0x1e, 0x7f,
	0xff, 0xff, 0xff, 0x7b, 0x0f, 0x1d, 0xff, 0x04, 0x05, 0xff, 0xff, 0x07, 0xff, 0xff, 0xff,
	0xff, 0x7d, 0x08, 0xff, 0xff, 0xff, 0x7c, 0xff, 0x0c, 0x06, 0xff, 0xff, 0x7e, 0xff, 0xff
};

/* GSM 03.38 6.2.1 Character lookup for decoding */
static int gsm_septet_lookup(uint8_t ch)
{
	int i = 0;
	for (; i < sizeof(gsm_7bit_alphabet); i++) {
		if (gsm_7bit_alphabet[i] == ch)
			return i;
	}
	return -1;
}

/*! \brife Compute number of octets from number of septets,
 *  for instance: 47 septets needs 41,125 = 42 octets
 *  \param[in sept_len Number of Septets
 *  \returns Number of octets required */
uint8_t gsm_get_octet_len(const uint8_t sept_len){
	int octet_len = (sept_len * 7) / 8;
	if ((sept_len * 7) % 8 != 0)
		octet_len++;

	return octet_len;
}

/*! TS 03.38 7-bit Character unpacking (6.2.1)
 *  \param[out] text Caller-provided output text buffer
 *  \param[in] n Length of \a text
 *  \param[in] user_data Input Data (septets)
 *  \param[in] septet_l Number of septets in \a user_data
 *  \param[in] ud_hdr_ind User Data Header present in data
 *  \returns number of bytes written to \a text */
int gsm_7bit_decode_n_hdr(char *text, size_t n, const uint8_t *user_data, uint8_t septet_l, uint8_t ud_hdr_ind)
{
	unsigned shift = 0;
	uint8_t c7, c8, next_is_ext = 0, lu, ru;
	const uint8_t maxlen = gsm_get_octet_len(septet_l);
	const char *text_buf_begin = text;
	const char *text_buf_end = text + n;

	OSMO_ASSERT (n > 0);

	/* skip the user data header */
	if (ud_hdr_ind) {
		/* get user data header length + 1 (for the 'user data header length'-field) */
		shift = ((user_data[0] + 1) * 8) / 7;
		if ((((user_data[0] + 1) * 8) % 7) != 0)
			shift++;
		septet_l = septet_l - shift;
	}

	unsigned i, l, r;
	for (i = 0; i < septet_l && text != text_buf_end - 1; i++) {

		l = ((i + shift) * 7 + 7) >> 3;
		r = ((i + shift) * 7) >> 3;

		/* the left side index is always >= right side index
		sometimes it even gets beyond array boundary
		check for that explicitly and force 0 instead
		 */
		if (l >= maxlen)
			lu = 0;
		else
			lu = user_data[l] << (7 - (((i + shift) * 7 + 7) & 7));

		ru = user_data[r] >> (((i + shift) * 7) & 7);

		c7 = (lu | ru) & 0x7f;

		if (next_is_ext) {
			/* this is an extension character */
			next_is_ext = 0;
			c8 = gsm_7bit_alphabet[0x7f + c7];
		} else if (c7 == 0x1b && i + 1 < septet_l) {
			next_is_ext = 1;
			continue;
		} else {
			c8 = gsm_septet_lookup(c7);
		}

		*(text++) = c8;
	}

	*text = '\0';

	return text - text_buf_begin;
}

/*! Decode 7bit GSM Alphabet */
int gsm_7bit_decode_n(char *text, size_t n, const uint8_t *user_data, uint8_t septet_l)
{
	return gsm_7bit_decode_n_hdr(text, n, user_data, septet_l, 0);
}

/*! Decode 7bit GSM Alphabet (USSD) */
int gsm_7bit_decode_n_ussd(char *text, size_t n, const uint8_t *user_data, uint8_t length)
{
	int nchars;

	nchars = gsm_7bit_decode_n_hdr(text, n, user_data, length, 0);
	/* remove last <CR>, if it fits up to the end of last octet */
	if (nchars && (user_data[gsm_get_octet_len(length) - 1] >> 1) == '\r')
		text[--nchars] = '\0';

	return nchars;
}

/*! Encode a ASCII characterrs as 7-bit GSM alphabet (TS 03.38)
 *
 *  This function converts a zero-terminated input string \a data from
 *  ASCII into octet-aligned 7-bit GSM characters. No packing is
 *  performed.
 *
 *  \param[out] result caller-allocated output buffer
 *  \param[in] data input data, ASCII
 *  \returns number of octets used in \a result */
int gsm_septet_encode(uint8_t *result, const char *data)
{
	int i, y = 0;
	uint8_t ch;
	for (i = 0; i < strlen(data); i++) {
		ch = data[i];
		switch(ch){
		/* fall-through for extension characters */
		case 0x0c:
		case 0x5e:
		case 0x7b:
		case 0x7d:
		case 0x5c:
		case 0x5b:
		case 0x7e:
		case 0x5d:
		case 0x7c:
			result[y++] = 0x1b;
		default:
			result[y] = gsm_7bit_alphabet[ch];
			break;
		}
		y++;
	}

	return y;
}

/*! GSM Default Alphabet 7bit to octet packing
 *  \param[out] result Caller-provided output buffer
 *  \param[in] rdata Input data septets
 *  \param[in] septet_len Length of \a rdata
 *  \param[in] padding padding bits at start
 *  \returns number of bytes used in \a result */
int gsm_septets2octets(uint8_t *result, const uint8_t *rdata, uint8_t septet_len, uint8_t padding)
{
	int i = 0, z = 0;
	uint8_t cb, nb;
	int shift = 0;
	uint8_t *data = calloc(septet_len + 1, sizeof(uint8_t));

	if (padding) {
		shift = 7 - padding;
		/* the first zero is needed for padding */
		memcpy(data + 1, rdata, septet_len);
		septet_len++;
	} else
		memcpy(data, rdata, septet_len);

	for (i = 0; i < septet_len; i++) {
		if (shift == 7) {
			/*
			 * special end case with the. This is necessary if the
			 * last septet fits into the previous octet. E.g. 48
			 * non-extension characters:
			 *   ....ag ( a = 1100001, g = 1100111)
			 * result[40] = 100001 XX, result[41] = 1100111 1 */
			if (i + 1 < septet_len) {
				shift = 0;
				continue;
			} else if (i + 1 == septet_len)
				break;
		}

		cb = (data[i] & 0x7f) >> shift;
		if (i + 1 < septet_len) {
			nb = (data[i + 1] & 0x7f) << (7 - shift);
			cb = cb | nb;
		}

		result[z++] = cb;
		shift++;
	}

	free(data);

	return z;
}

/*! GSM 7-bit alphabet TS 03.38 6.2.1 Character packing
 *  \param[out] result Caller-provided output buffer
 *  \param[in] n Maximum length of \a result in bytes
 *  \param[in] data octet-aligned string
 *  \param[out] octets Number of octets encoded
 *  \returns number of septets encoded */
int gsm_7bit_encode_n(uint8_t *result, size_t n, const char *data, int *octets)
{
	int y = 0;
	int o;
	size_t max_septets = n * 8 / 7;

	/* prepare for the worst case, every character expanding to two bytes */
	uint8_t *rdata = calloc(strlen(data) * 2, sizeof(uint8_t));
	y = gsm_septet_encode(rdata, data);

	if (y > max_septets) {
		/*
		 * Limit the number of septets to avoid the generation
		 * of more than n octets.
		 */
		y = max_septets;
	}

	o = gsm_septets2octets(result, rdata, y, 0);

	if (octets)
		*octets = o;

	free(rdata);

	/*
	 * We don't care about the number of octets, because they are not
	 * unique. E.g.:
	 *  1.) 46 non-extension characters + 1 extension character
	 *         => (46 * 7 bit + (1 * (2 * 7 bit))) / 8 bit =  42 octets
	 *  2.) 47 non-extension characters
	 *         => (47 * 7 bit) / 8 bit = 41,125 = 42 octets
	 *  3.) 48 non-extension characters
	 *         => (48 * 7 bit) / 8 bit = 42 octects
	 */
	return y;
}

/*! Encode according to GSM 7-bit alphabet (TS 03.38 6.2.1) for USSD
 *  \param[out] result Caller-provided output buffer
 *  \param[in] n Maximum length of \a result in bytes
 *  \param[in] data octet-aligned string
 *  \param[out] octets Number of octets encoded
 *  \returns number of septets encoded */
int gsm_7bit_encode_n_ussd(uint8_t *result, size_t n, const char *data, int *octets)
{
	int y;

	y = gsm_7bit_encode_n(result, n, data, octets);
	/* if last octet contains only one bit, add <CR> */
	if (((y * 7) & 7) == 1)
		result[(*octets) - 1] |= ('\r' << 1);
	/* if last character is <CR> and completely fills last octet, add
	 * another <CR>. */
	if (y && ((y * 7) & 7) == 0 && (result[(*octets) - 1] >> 1) == '\r' && *octets < n - 1) {
		result[(*octets)++] = '\r';
		y++;
	}

	return y;
}

/*! Generate random identifier
 *  We use /dev/urandom (default when GRND_RANDOM flag is not set).
 *  Both /dev/(u)random numbers are coming from the same CSPRNG anyway (at least on GNU/Linux >= 4.8).
 *  See also RFC4086.
 *  \param[out] out Buffer to be filled with random data
 *  \param[in] len Number of random bytes required
 *  \returns 0 on success, or a negative error code on error.
 */
int osmo_get_rand_id(uint8_t *out, size_t len)
{
	int rc = -ENOTSUP;

	/* this function is intended for generating short identifiers only, not arbitrary-length random data */
	if (len > OSMO_MAX_RAND_ID_LEN)
               return -E2BIG;

#if defined(__GLIBC__) && (__GLIBC__ >= 2) && (__GLIBC_MINOR__ >= 25)
	rc = getrandom(out, len, GRND_NONBLOCK);
#elif HAVE_DECL_SYS_GETRANDOM
#pragma message ("Using direct syscall access for getrandom(): consider upgrading to glibc >= 2.25")
	/* FIXME: this can be removed once we bump glibc requirements to 2.25: */
	rc = syscall(SYS_getrandom, out, len, GRND_NONBLOCK);
#endif

	/* getrandom() failed entirely: */
	if (rc < 0) {
#if (USE_GNUTLS)
#pragma message ("Secure random failed: using GnuTLS fallback.")
		return gnutls_rnd(GNUTLS_RND_RANDOM, out, len);
#endif
		return -errno;
	}

	/* getrandom() failed partially due to signal interruption:
	   this should never happen (according to getrandom(2)) as long as OSMO_MAX_RAND_ID_LEN < 256
	   because we do not set GRND_RANDOM but it's better to be paranoid and check anyway */
	if (rc != len)
               return -EAGAIN;

	return 0;
}

/*! Build the RSL uplink measurement IE (3GPP TS 08.58 § 9.3.25)
 *  \param[in] mru Unidirectional measurement report structure
 *  \param[in] dtxd_used Indicates if DTXd was used during measurement report
 *             period
 *  \param[out] buf Pre-allocated bufer for storing IE
 *  \returns Number of bytes filled in buf
 */
size_t gsm0858_rsl_ul_meas_enc(struct gsm_meas_rep_unidir *mru, bool dtxd_used,
			uint8_t *buf)
{
	buf[0] = dtxd_used ? (1 << 6) : 0;
	buf[0] |= (mru->full.rx_lev & 0x3f);
	buf[1] = (mru->sub.rx_lev & 0x3f);
	buf[2] = ((mru->full.rx_qual & 7) << 3) | (mru->sub.rx_qual & 7);

	return 3;
}

/*! Convert power class to dBm according to GSM TS 05.05
 *  \param[in] band GSM frequency band
 *  \param[in] class GSM power class
 *  \returns maximum transmit power of power class in dBm */
unsigned int ms_class_gmsk_dbm(enum gsm_band band, int class)
{
	switch (band) {
	case GSM_BAND_450:
	case GSM_BAND_480:
	case GSM_BAND_750:
	case GSM_BAND_900:
	case GSM_BAND_810:
	case GSM_BAND_850:
		if (class == 1)
			return 43; /* 20W */
		if (class == 2)
			return 39; /* 8W */
		if (class == 3)
			return 37; /* 5W */
		if (class == 4)
			return 33; /* 2W */
		if (class == 5)
			return 29; /* 0.8W */
		break;
	case GSM_BAND_1800:
		if (class == 1)
			return 30; /* 1W */
		if (class == 2)
			return 24; /* 0.25W */
		if (class == 3)
			return 36; /* 4W */
		break;
	case GSM_BAND_1900:
		if (class == 1)
			return 30; /* 1W */
		if (class == 2)
			return 24; /* 0.25W */
		if (class == 3)
			return 33; /* 2W */
		break;
	}
	return -EINVAL;
}

/*! determine power control level for given dBm value, as indicated
 *  by the tables in chapter 4.1.1 of GSM TS 05.05
 *  \param[in] GSM frequency band
 *  \param[in] dbm RF power value in dBm
 *  \returns TS 05.05 power control level */
int ms_pwr_ctl_lvl(enum gsm_band band, unsigned int dbm)
{
	switch (band) {
	case GSM_BAND_450:
	case GSM_BAND_480:
	case GSM_BAND_750:
	case GSM_BAND_900:
	case GSM_BAND_810:
	case GSM_BAND_850:
		if (dbm >= 39)
			return 0;
		else if (dbm < 5)
			return 19;
		else {
			/* we are guaranteed to have (5 <= dbm < 39) */
			return 2 + ((39 - dbm) / 2);
		}
		break;
	case GSM_BAND_1800:
		if (dbm >= 36)
			return 29;
		else if (dbm >= 34)
			return 30;
		else if (dbm >= 32)
			return 31;
		else if (dbm == 31)
			return 0;
		else {
			/* we are guaranteed to have (0 <= dbm < 31) */
			return (30 - dbm) / 2;
		}
		break;
	case GSM_BAND_1900:
		if (dbm >= 33)
			return 30;
		else if (dbm >= 32)
			return 31;
		else if (dbm == 31)
			return 0;
		else {
			/* we are guaranteed to have (0 <= dbm < 31) */
			return (30 - dbm) / 2;
		}
		break;
	}
	return -EINVAL;
}

/*! Convert TS 05.05 power level to absolute dBm value
 *  \param[in] band GSM frequency band
 *  \param[in] lvl TS 05.05 power control level
 *  \returns RF power level in dBm */
int ms_pwr_dbm(enum gsm_band band, uint8_t lvl)
{
	lvl &= 0x1f;

	switch (band) {
	case GSM_BAND_450:
	case GSM_BAND_480:
	case GSM_BAND_750:
	case GSM_BAND_900:
	case GSM_BAND_810:
	case GSM_BAND_850:
		if (lvl < 2)
			return 39;
		else if (lvl < 20)
			return 39 - ((lvl - 2) * 2) ;
		else
			return 5;
		break;
	case GSM_BAND_1800:
		if (lvl < 16)
			return 30 - (lvl * 2);
		else if (lvl < 29)
			return 0;
		else
			return 36 - ((lvl - 29) * 2);
		break;
	case GSM_BAND_1900:
		if (lvl < 16)
			return 30 - (lvl * 2);
		else if (lvl < 30)
			return -EINVAL;
		else
			return 33 - (lvl - 30);
		break;
	}
	return -EINVAL;
}

/*! Convert TS 05.08 RxLev to dBm (TS 05.08 Chapter 8.1.4)
 *  \param[in] rxlev TS 05.08 RxLev value
 *  \returns Received RF power in dBm */
int rxlev2dbm(uint8_t rxlev)
{
	if (rxlev > 63)
		rxlev = 63;

	return -110 + rxlev;
}

/*! Convert RF signal level in dBm to TS 05.08 RxLev (TS 05.08 Chapter 8.1.4)
 *  \param[in] dbm RF signal level in dBm
 *  \returns TS 05.08 RxLev value */
uint8_t dbm2rxlev(int dbm)
{
	int rxlev = dbm + 110;

	if (rxlev > 63)
		rxlev = 63;
	else if (rxlev < 0)
		rxlev = 0;

	return rxlev;
}

/*! Return string name of a given GSM Band */
const char *gsm_band_name(enum gsm_band band)
{
	switch (band) {
	case GSM_BAND_450:
		return "GSM450";
	case GSM_BAND_480:
		return "GSM480";
	case GSM_BAND_750:
		return "GSM750";
	case GSM_BAND_810:
		return "GSM810";
	case GSM_BAND_850:
		return "GSM850";
	case GSM_BAND_900:
		return "GSM900";
	case GSM_BAND_1800:
		return "DCS1800";
	case GSM_BAND_1900:
		return "PCS1900";
	}
	return "invalid";
}

/*! Parse string name of a GSM band */
enum gsm_band gsm_band_parse(const char* mhz)
{
	while (*mhz && !isdigit((unsigned char)*mhz))
		mhz++;

	if (*mhz == '\0')
		return -EINVAL;

	switch (strtol(mhz, NULL, 10)) {
	case 450:
		return GSM_BAND_450;
	case 480:
		return GSM_BAND_480;
	case 750:
		return GSM_BAND_750;
	case 810:
		return GSM_BAND_810;
	case 850:
		return GSM_BAND_850;
	case 900:
		return GSM_BAND_900;
	case 1800:
		return GSM_BAND_1800;
	case 1900:
		return GSM_BAND_1900;
	default:
		return -EINVAL;
	}
}

/*! Resolve GSM band from ARFCN.
 *  In Osmocom, we use the highest bit of the \a arfcn to indicate PCS
 *  \param[in] arfcn Osmocom ARFCN, highest bit determines PCS mode
 *  \param[out] band GSM Band containing \arfcn if arfcn is valid, undetermined otherwise
 *  \returns 0 if arfcn is valid and \a band was set, negative on error */
int gsm_arfcn2band_rc(uint16_t arfcn, enum gsm_band *band)
{
	int is_pcs = arfcn & ARFCN_PCS;

	arfcn &= ~ARFCN_FLAG_MASK;

	if (is_pcs) {
		*band = GSM_BAND_1900;
		return 0;
	} else if (arfcn <= 124) {
		*band = GSM_BAND_900;
		return 0;
	} else if (arfcn >= 955 && arfcn <= 1023) {
		*band = GSM_BAND_900;
		return 0;
	} else if (arfcn >= 128 && arfcn <= 251) {
		*band = GSM_BAND_850;
		return 0;
	} else if (arfcn >= 512 && arfcn <= 885) {
		*band = GSM_BAND_1800;
		return 0;
	} else if (arfcn >= 259 && arfcn <= 293) {
		*band = GSM_BAND_450;
		return 0;
	} else if (arfcn >= 306 && arfcn <= 340) {
		*band = GSM_BAND_480;
		return 0;
	} else if (arfcn >= 350 && arfcn <= 425) {
		*band = GSM_BAND_810;
		return 0;
	} else if (arfcn >= 438 && arfcn <= 511) {
		*band = GSM_BAND_750;
		return 0;
	}
	return -1;
}

/*! Resolve GSM band from ARFCN, aborts process on invalid ARFCN.
 *  In Osmocom, we use the highest bit of the \a arfcn to indicate PCS.
 *  DEPRECATED: Use gsm_arfcn2band_rc instead.
 *  \param[in] arfcn Osmocom ARFCN, highest bit determines PCS mode
 *  \returns GSM Band if ARFCN is valid (part of any valid band), aborts otherwise */
enum gsm_band gsm_arfcn2band(uint16_t arfcn)
{
	enum gsm_band band;
	if (gsm_arfcn2band_rc(arfcn, &band) == 0)
		return band;

	osmo_panic("%s:%d Invalid arfcn %" PRIu16 " passed to gsm_arfcn2band\n",
		   __FILE__, __LINE__, arfcn);
}

struct gsm_freq_range {
	uint16_t arfcn_first;
	uint16_t arfcn_last;
	uint16_t freq_ul_first;
	uint16_t freq_dl_offset;
	uint16_t flags;
};

static struct gsm_freq_range gsm_ranges[] = {
	{ 512,  810, 18502, 800, ARFCN_PCS },	/* PCS 1900 */
	{   0,  124,  8900, 450, 0 },		/* P-GSM + E-GSM ARFCN 0 */
	{ 955, 1023,  8762, 450, 0 },		/* E-GSM + R-GSM */
	{ 128,  251,  8242, 450, 0 },		/* GSM 850  */
	{ 512,  885, 17102, 950, 0 },		/* DCS 1800 */
	{ 259,  293,  4506, 100, 0 },		/* GSM 450  */
	{ 306,  340,  4790, 100, 0 },		/* GSM 480  */
	{ 350,  425,  8060, 450, 0 },		/* GSM 810  */
	{ 438,  511,  7472, 300, 0 },		/* GSM 750  */
	{ /* Guard */ }
};

/*! Convert an ARFCN to the frequency in MHz * 10
 *  \param[in] arfcn GSM ARFCN to convert
 *  \param[in] uplink Uplink (1) or Downlink (0) frequency
 *  \returns Frequency in units of 1/10ths of MHz (100kHz) */
uint16_t gsm_arfcn2freq10(uint16_t arfcn, int uplink)
{
	struct gsm_freq_range *r;
	uint16_t flags = arfcn & ARFCN_FLAG_MASK;
	uint16_t freq10_ul = 0xffff;
	uint16_t freq10_dl = 0xffff;

	arfcn &= ~ARFCN_FLAG_MASK;

	for (r=gsm_ranges; r->freq_ul_first>0; r++) {
		if ((flags == r->flags) &&
		    (arfcn >= r->arfcn_first) &&
		    (arfcn <= r->arfcn_last))
		{
			freq10_ul = r->freq_ul_first + 2 * (arfcn - r->arfcn_first);
			freq10_dl = freq10_ul + r->freq_dl_offset;
			break;
		}
	}

	return uplink ? freq10_ul : freq10_dl;
}

/*! Convert a Frequency in MHz * 10 to ARFCN
 *  \param[in] freq10 Frequency in units of 1/10ths of MHz (100kHz)
 *  \param[in] uplink Frequency is Uplink (1) or Downlink (0)
 *  \returns ARFCN in case of success; 0xffff on error */
uint16_t gsm_freq102arfcn(uint16_t freq10, int uplink)
{
	struct gsm_freq_range *r;
	uint16_t freq10_lo, freq10_hi;
	uint16_t arfcn = 0xffff;

	for (r=gsm_ranges; r->freq_ul_first>0; r++) {
		/* Generate frequency limits */
		freq10_lo = r->freq_ul_first;
		freq10_hi = freq10_lo + 2 * (r->arfcn_last - r->arfcn_first);
		if (!uplink) {
			freq10_lo += r->freq_dl_offset;
			freq10_hi += r->freq_dl_offset;
		}

		/* Check if this fits */
		if (freq10 >= freq10_lo && freq10 <= freq10_hi) {
			arfcn  = r->arfcn_first + ((freq10 - freq10_lo) >> 1);
			arfcn |= r->flags;
			break;
		}
	}

	if (uplink)
		arfcn |= ARFCN_UPLINK;

	return arfcn;
}

/*! Parse GSM Frame Number into struct \ref gsm_time
 *  \param[out] time Caller-provided memory for \ref gsm_time
 *  \param[in] fn GSM Frame Number */
void gsm_fn2gsmtime(struct gsm_time *time, uint32_t fn)
{
	time->fn = fn;
	time->t1 = time->fn / (26*51);
	time->t2 = time->fn % 26;
	time->t3 = time->fn % 51;
	time->tc = (time->fn / 51) % 8;
}

/*! Parse GSM Frame Number into printable string
 *  \param[in] fn GSM Frame Number
 *  \returns pointer to printable string */
char *gsm_fn_as_gsmtime_str(uint32_t fn)
{
	struct gsm_time time;

	gsm_fn2gsmtime(&time, fn);
	return osmo_dump_gsmtime(&time);
}

/*! Encode decoded \ref gsm_time to Frame Number
 *  \param[in] time GSM Time in decoded structure
 *  \returns GSM Frame Number */
uint32_t gsm_gsmtime2fn(struct gsm_time *time)
{
	/* TS 05.02 Chapter 4.3.3 TDMA frame number */
	return (51 * ((time->t3 - time->t2 + 26) % 26) + time->t3 + (26 * 51 * time->t1));
}

char *osmo_dump_gsmtime(const struct gsm_time *tm)
{
	static char buf[64];

	snprintf(buf, sizeof(buf), "%06"PRIu32"/%02"PRIu16"/%02"PRIu8"/%02"PRIu8"/%02"PRIu8,
		 tm->fn, tm->t1, tm->t2, tm->t3, (uint8_t)tm->fn%52);
	buf[sizeof(buf)-1] = '\0';
	return buf;
}

/*! append range1024 encoded data to bit vector
 *  \param[out] bv Caller-provided output bit-vector
 *  \param[in] r Input Range1024 sructure */
void bitvec_add_range1024(struct bitvec *bv, const struct gsm48_range_1024 *r)
{
	bitvec_set_uint(bv, r->w1_hi, 2);
	bitvec_set_uint(bv, r->w1_lo, 8);
	bitvec_set_uint(bv, r->w2_hi, 8);
	bitvec_set_uint(bv, r->w2_lo, 1);
	bitvec_set_uint(bv, r->w3_hi, 7);
	bitvec_set_uint(bv, r->w3_lo, 2);
	bitvec_set_uint(bv, r->w4_hi, 6);
	bitvec_set_uint(bv, r->w4_lo, 2);
	bitvec_set_uint(bv, r->w5_hi, 6);
	bitvec_set_uint(bv, r->w5_lo, 2);
	bitvec_set_uint(bv, r->w6_hi, 6);
	bitvec_set_uint(bv, r->w6_lo, 2);
	bitvec_set_uint(bv, r->w7_hi, 6);
	bitvec_set_uint(bv, r->w7_lo, 2);
	bitvec_set_uint(bv, r->w8_hi, 6);
	bitvec_set_uint(bv, r->w8_lo, 1);
	bitvec_set_uint(bv, r->w9, 7);
	bitvec_set_uint(bv, r->w10, 7);
	bitvec_set_uint(bv, r->w11_hi, 1);
	bitvec_set_uint(bv, r->w11_lo, 6);
	bitvec_set_uint(bv, r->w12_hi, 2);
	bitvec_set_uint(bv, r->w12_lo, 5);
	bitvec_set_uint(bv, r->w13_hi, 3);
	bitvec_set_uint(bv, r->w13_lo, 4);
	bitvec_set_uint(bv, r->w14_hi, 4);
	bitvec_set_uint(bv, r->w14_lo, 3);
	bitvec_set_uint(bv, r->w15_hi, 5);
	bitvec_set_uint(bv, r->w15_lo, 2);
	bitvec_set_uint(bv, r->w16, 6);
}

/*! Determine GPRS TLLI Type (TS 23.003 Chapter 2.6) */
int gprs_tlli_type(uint32_t tlli)
{
	if ((tlli & 0xc0000000) == 0xc0000000)
		return TLLI_LOCAL;
	else if ((tlli & 0xc0000000) == 0x80000000)
		return TLLI_FOREIGN;
	else if ((tlli & 0xf8000000) == 0x78000000)
		return TLLI_RANDOM;
	else if ((tlli & 0xf8000000) == 0x70000000)
		return TLLI_AUXILIARY;
	else if ((tlli & 0xf0000000) == 0x00000000)
		return TLLI_G_RNTI;
	else if ((tlli & 0xf0000000) == 0x10000000)
		return TLLI_RAND_G_RNTI;

	return TLLI_RESERVED;
}

/*! Determine TLLI from P-TMSI
 *  \param[in] p_tmsi P-TMSI
 *  \param[in] type TLLI Type we want to derive from \a p_tmsi
 *  \returns TLLI of given type */
uint32_t gprs_tmsi2tlli(uint32_t p_tmsi, enum gprs_tlli_type type)
{
	uint32_t tlli;
	switch (type) {
	case TLLI_LOCAL:
		tlli = p_tmsi | 0xc0000000;
		break;
	case TLLI_FOREIGN:
		tlli = (p_tmsi & 0x3fffffff) | 0x80000000;
		break;
	default:
		tlli = 0;
		break;
	}
	ret