1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
|
/*
* Accelerated Viterbi decoder implementation
* Actual definitions which are being included
* from both conv_acc_sse.c and conv_acc_sse_avx.c
*
* Copyright (C) 2013, 2014 Thomas Tsou <tom@tsou.cc>
*
* All Rights Reserved
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
extern int sse41_supported;
/* Octo-Viterbi butterfly
* Compute 8-wide butterfly generating 16 path decisions and 16 accumulated
* sums. Inputs all packed 16-bit integers in three 128-bit XMM registers.
* Two intermediate registers are used and results are set in the upper 4
* registers.
*
* Input:
* M0 - Path metrics 0 (packed 16-bit integers)
* M1 - Path metrics 1 (packed 16-bit integers)
* M2 - Branch metrics (packed 16-bit integers)
*
* Output:
* M2 - Selected and accumulated path metrics 0
* M4 - Selected and accumulated path metrics 1
* M3 - Path selections 0
* M1 - Path selections 1
*/
#define SSE_BUTTERFLY(M0, M1, M2, M3, M4) \
{ \
M3 = _mm_adds_epi16(M0, M2); \
M4 = _mm_subs_epi16(M1, M2); \
M0 = _mm_subs_epi16(M0, M2); \
M1 = _mm_adds_epi16(M1, M2); \
M2 = _mm_max_epi16(M3, M4); \
M3 = _mm_or_si128(_mm_cmpgt_epi16(M3, M4), _mm_cmpeq_epi16(M3, M4)); \
M4 = _mm_max_epi16(M0, M1); \
M1 = _mm_or_si128(_mm_cmpgt_epi16(M0, M1), _mm_cmpeq_epi16(M0, M1)); \
}
/* Two lane deinterleaving K = 5:
* Take 16 interleaved 16-bit integers and deinterleave to 2 packed 128-bit
* registers. The operation summarized below. Four registers are used with
* the lower 2 as input and upper 2 as output.
*
* In - 10101010 10101010 10101010 10101010
* Out - 00000000 11111111 00000000 11111111
*
* Input:
* M0:1 - Packed 16-bit integers
*
* Output:
* M2:3 - Deinterleaved packed 16-bit integers
*/
#define _I8_SHUFFLE_MASK 15, 14, 11, 10, 7, 6, 3, 2, 13, 12, 9, 8, 5, 4, 1, 0
#define SSE_DEINTERLEAVE_K5(M0, M1, M2, M3) \
{ \
M2 = _mm_set_epi8(_I8_SHUFFLE_MASK); \
M0 = _mm_shuffle_epi8(M0, M2); \
M1 = _mm_shuffle_epi8(M1, M2); \
M2 = _mm_unpacklo_epi64(M0, M1); \
M3 = _mm_unpackhi_epi64(M0, M1); \
}
/* Two lane deinterleaving K = 7:
* Take 64 interleaved 16-bit integers and deinterleave to 8 packed 128-bit
* registers. The operation summarized below. 16 registers are used with the
* lower 8 as input and upper 8 as output.
*
* In - 10101010 10101010 10101010 10101010 ...
* Out - 00000000 11111111 00000000 11111111 ...
*
* Input:
* M0:7 - Packed 16-bit integers
*
* Output:
* M8:15 - Deinterleaved packed 16-bit integers
*/
#define SSE_DEINTERLEAVE_K7(M0, M1, M2, M3, M4, M5, M6, M7, \
M8, M9, M10, M11, M12, M13, M14, M15) \
{ \
M8 = _mm_set_epi8(_I8_SHUFFLE_MASK); \
M0 = _mm_shuffle_epi8(M0, M8); \
M1 = _mm_shuffle_epi8(M1, M8); \
M2 = _mm_shuffle_epi8(M2, M8); \
M3 = _mm_shuffle_epi8(M3, M8); \
M4 = _mm_shuffle_epi8(M4, M8); \
M5 = _mm_shuffle_epi8(M5, M8); \
M6 = _mm_shuffle_epi8(M6, M8); \
M7 = _mm_shuffle_epi8(M7, M8); \
M8 = _mm_unpacklo_epi64(M0, M1); \
M9 = _mm_unpackhi_epi64(M0, M1); \
M10 = _mm_unpacklo_epi64(M2, M3); \
M11 = _mm_unpackhi_epi64(M2, M3); \
M12 = _mm_unpacklo_epi64(M4, M5); \
M13 = _mm_unpackhi_epi64(M4, M5); \
M14 = _mm_unpacklo_epi64(M6, M7); \
M15 = _mm_unpackhi_epi64(M6, M7); \
}
/* Generate branch metrics N = 2:
* Compute 16 branch metrics from trellis outputs and input values.
*
* Input:
* M0:3 - 16 x 2 packed 16-bit trellis outputs
* M4 - Expanded and packed 16-bit input value
*
* Output:
* M6:7 - 16 computed 16-bit branch metrics
*/
#define SSE_BRANCH_METRIC_N2(M0, M1, M2, M3, M4, M6, M7) \
{ \
M0 = _mm_sign_epi16(M4, M0); \
M1 = _mm_sign_epi16(M4, M1); \
M2 = _mm_sign_epi16(M4, M2); \
M3 = _mm_sign_epi16(M4, M3); \
M6 = _mm_hadds_epi16(M0, M1); \
M7 = _mm_hadds_epi16(M2, M3); \
}
/* Generate branch metrics N = 4:
* Compute 8 branch metrics from trellis outputs and input values. This
* macro is reused for N less than 4 where the extra soft input bits are
* padded.
*
* Input:
* M0:3 - 8 x 4 packed 16-bit trellis outputs
* M4 - Expanded and packed 16-bit input value
*
* Output:
* M5 - 8 computed 16-bit branch metrics
*/
#define SSE_BRANCH_METRIC_N4(M0, M1, M2, M3, M4, M5) \
{ \
M0 = _mm_sign_epi16(M4, M0); \
M1 = _mm_sign_epi16(M4, M1); \
M2 = _mm_sign_epi16(M4, M2); \
M3 = _mm_sign_epi16(M4, M3); \
M0 = _mm_hadds_epi16(M0, M1); \
M1 = _mm_hadds_epi16(M2, M3); \
M5 = _mm_hadds_epi16(M0, M1); \
}
/* Horizontal minimum
* Compute horizontal minimum of packed unsigned 16-bit integers and place
* result in the low 16-bit element of the source register. Only SSE 4.1
* has a dedicated minpos instruction. One intermediate register is used
* if SSE 4.1 is not available. This is a destructive operation and the
* source register is overwritten.
*
* Input:
* M0 - Packed unsigned 16-bit integers
*
* Output:
* M0 - Minimum value placed in low 16-bit element
*/
#if defined(HAVE_SSE4_1) || defined(HAVE_SSE41)
#define SSE_MINPOS(M0, M1) \
{ \
if (sse41_supported) { \
M0 = _mm_minpos_epu16(M0); \
} else { \
M1 = _mm_shuffle_epi32(M0, _MM_SHUFFLE(0, 0, 3, 2)); \
M0 = _mm_min_epi16(M0, M1); \
M1 = _mm_shufflelo_epi16(M0, _MM_SHUFFLE(0, 0, 3, 2)); \
M0 = _mm_min_epi16(M0, M1); \
M1 = _mm_shufflelo_epi16(M0, _MM_SHUFFLE(0, 0, 0, 1)); \
M0 = _mm_min_epi16(M0, M1); \
} \
}
#else
#define SSE_MINPOS(M0, M1) \
{ \
M1 = _mm_shuffle_epi32(M0, _MM_SHUFFLE(0, 0, 3, 2)); \
M0 = _mm_min_epi16(M0, M1); \
M1 = _mm_shufflelo_epi16(M0, _MM_SHUFFLE(0, 0, 3, 2)); \
M0 = _mm_min_epi16(M0, M1); \
M1 = _mm_shufflelo_epi16(M0, _MM_SHUFFLE(0, 0, 0, 1)); \
M0 = _mm_min_epi16(M0, M1); \
}
#endif
/* Normalize state metrics K = 5:
* Compute 16-wide normalization by subtracting the smallest value from
* all values. Inputs are 16 packed 16-bit integers across 2 XMM registers.
* Two intermediate registers are used and normalized results are placed
* in the originating locations.
*
* Input:
* M0:1 - Path metrics 0:1 (packed 16-bit integers)
*
* Output:
* M0:1 - Normalized path metrics 0:1
*/
#define SSE_NORMALIZE_K5(M0, M1, M2, M3) \
{ \
M2 = _mm_min_epi16(M0, M1); \
SSE_MINPOS(M2, M3) \
SSE_BROADCAST(M2) \
M0 = _mm_subs_epi16(M0, M2); \
M1 = _mm_subs_epi16(M1, M2); \
}
/* Normalize state metrics K = 7:
* Compute 64-wide normalization by subtracting the smallest value from
* all values. Inputs are 8 registers of accumulated sums and 4 temporary
* registers. Normalized results are returned in the originating locations.
*
* Input:
* M0:7 - Path metrics 0:7 (packed 16-bit integers)
*
* Output:
* M0:7 - Normalized path metrics 0:7
*/
#define SSE_NORMALIZE_K7(M0, M1, M2, M3, M4, M5, M6, M7, M8, M9, M10, M11) \
{ \
M8 = _mm_min_epi16(M0, M1); \
M9 = _mm_min_epi16(M2, M3); \
M10 = _mm_min_epi16(M4, M5); \
M11 = _mm_min_epi16(M6, M7); \
M8 = _mm_min_epi16(M8, M9); \
M10 = _mm_min_epi16(M10, M11); \
M8 = _mm_min_epi16(M8, M10); \
SSE_MINPOS(M8, M9) \
SSE_BROADCAST(M8) \
M0 = _mm_subs_epi16(M0, M8); \
M1 = _mm_subs_epi16(M1, M8); \
M2 = _mm_subs_epi16(M2, M8); \
M3 = _mm_subs_epi16(M3, M8); \
M4 = _mm_subs_epi16(M4, M8); \
M5 = _mm_subs_epi16(M5, M8); \
M6 = _mm_subs_epi16(M6, M8); \
M7 = _mm_subs_epi16(M7, M8); \
}
/* Combined BMU/PMU (K=5, N=2)
* Compute branch metrics followed by path metrics for half rate 16-state
* trellis. 8 butterflies are computed. Accumulated path sums are not
* preserved and read and written into the same memory location. Normalize
* sums if requires.
*/
__always_inline static void _sse_metrics_k5_n2(const int16_t *val,
const int16_t *out, int16_t *sums, int16_t *paths, int norm)
{
__m128i m0, m1, m2, m3, m4, m5, m6;
/* (BMU) Load input sequence */
m2 = _mm_castpd_si128(_mm_loaddup_pd((double const *) val));
/* (BMU) Load trellis outputs */
m0 = _mm_load_si128((__m128i *) &out[0]);
m1 = _mm_load_si128((__m128i *) &out[8]);
/* (BMU) Compute branch metrics */
m0 = _mm_sign_epi16(m2, m0);
m1 = _mm_sign_epi16(m2, m1);
m2 = _mm_hadds_epi16(m0, m1);
/* (PMU) Load accumulated path metrics */
m0 = _mm_load_si128((__m128i *) &sums[0]);
m1 = _mm_load_si128((__m128i *) &sums[8]);
SSE_DEINTERLEAVE_K5(m0, m1, m3, m4)
/* (PMU) Butterflies: 0-7 */
SSE_BUTTERFLY(m3, m4, m2, m5, m6)
if (norm)
SSE_NORMALIZE_K5(m2, m6, m0, m1)
_mm_store_si128((__m128i *) &sums[0], m2);
_mm_store_si128((__m128i *) &sums[8], m6);
_mm_store_si128((__m128i *) &paths[0], m5);
_mm_store_si128((__m128i *) &paths[8], m4);
}
/* Combined BMU/PMU (K=5, N=3 and N=4)
* Compute branch metrics followed by path metrics for 16-state and rates
* to 1/4. 8 butterflies are computed. The input sequence is read four 16-bit
* values at a time, and extra values should be set to zero for rates other
* than 1/4. Normally only rates 1/3 and 1/4 are used as there is a
* dedicated implementation of rate 1/2.
*/
__always_inline static void _sse_metrics_k5_n4(const int16_t *val,
const int16_t *out, int16_t *sums, int16_t *paths, int norm)
{
__m128i m0, m1, m2, m3, m4, m5, m6;
/* (BMU) Load input sequence */
m4 = _mm_castpd_si128(_mm_loaddup_pd((double const *) val));
/* (BMU) Load trellis outputs */
m0 = _mm_load_si128((__m128i *) &out[0]);
m1 = _mm_load_si128((__m128i *) &out[8]);
m2 = _mm_load_si128((__m128i *) &out[16]);
m3 = _mm_load_si128((__m128i *) &out[24]);
SSE_BRANCH_METRIC_N4(m0, m1, m2, m3, m4, m2)
/* (PMU) Load accumulated path metrics */
m0 = _mm_load_si128((__m128i *) &sums[0]);
m1 = _mm_load_si128((__m128i *) &sums[8]);
SSE_DEINTERLEAVE_K5(m0, m1, m3, m4)
/* (PMU) Butterflies: 0-7 */
SSE_BUTTERFLY(m3, m4, m2, m5, m6)
if (norm)
SSE_NORMALIZE_K5(m2, m6, m0, m1)
_mm_store_si128((__m128i *) &sums[0], m2);
_mm_store_si128((__m128i *) &sums[8], m6);
_mm_store_si128((__m128i *) &paths[0], m5);
_mm_store_si128((__m128i *) &paths[8], m4);
}
/* Combined BMU/PMU (K=7, N=2)
* Compute branch metrics followed by path metrics for half rate 64-state
* trellis. 32 butterfly operations are computed. Deinterleaving path
* metrics requires usage of the full SSE register file, so separate sums
* before computing branch metrics to avoid register spilling.
*/
__always_inline static void _sse_metrics_k7_n2(const int16_t *val,
const int16_t *out, int16_t *sums, int16_t *paths, int norm)
{
__m128i m0, m1, m2, m3, m4, m5, m6, m7, m8,
m9, m10, m11, m12, m13, m14, m15;
/* (PMU) Load accumulated path metrics */
m0 = _mm_load_si128((__m128i *) &sums[0]);
m1 = _mm_load_si128((__m128i *) &sums[8]);
m2 = _mm_load_si128((__m128i *) &sums[16]);
m3 = _mm_load_si128((__m128i *) &sums[24]);
m4 = _mm_load_si128((__m128i *) &sums[32]);
m5 = _mm_load_si128((__m128i *) &sums[40]);
m6 = _mm_load_si128((__m128i *) &sums[48]);
m7 = _mm_load_si128((__m128i *) &sums[56]);
/* (PMU) Deinterleave to even-odd registers */
SSE_DEINTERLEAVE_K7(m0, m1, m2, m3 ,m4 ,m5, m6, m7,
m8, m9, m10, m11, m12, m13, m14, m15)
/* (BMU) Load input symbols */
m7 = _mm_castpd_si128(_mm_loaddup_pd((double const *) val));
/* (BMU) Load trellis outputs */
m0 = _mm_load_si128((__m128i *) &out[0]);
m1 = _mm_load_si128((__m128i *) &out[8]);
m2 = _mm_load_si128((__m128i *) &out[16]);
m3 = _mm_load_si128((__m128i *) &out[24]);
SSE_BRANCH_METRIC_N2(m0, m1, m2, m3, m7, m4, m5)
m0 = _mm_load_si128((__m128i *) &out[32]);
m1 = _mm_load_si128((__m128i *) &out[40]);
m2 = _mm_load_si128((__m128i *) &out[48]);
m3 = _mm_load_si128((__m128i *) &out[56]);
SSE_BRANCH_METRIC_N2(m0, m1, m2, m3, m7, m6, m7)
/* (PMU) Butterflies: 0-15 */
SSE_BUTTERFLY(m8, m9, m4, m0, m1)
SSE_BUTTERFLY(m10, m11, m5, m2, m3)
_mm_store_si128((__m128i *) &paths[0], m0);
_mm_store_si128((__m128i *) &paths[8], m2);
_mm_store_si128((__m128i *) &paths[32], m9);
_mm_store_si128((__m128i *) &paths[40], m11);
/* (PMU) Butterflies: 17-31 */
SSE_BUTTERFLY(m12, m13, m6, m0, m2)
SSE_BUTTERFLY(m14, m15, m7, m9, m11)
_mm_store_si128((__m128i *) &paths[16], m0);
_mm_store_si128((__m128i *) &paths[24], m9);
_mm_store_si128((__m128i *) &paths[48], m13);
_mm_store_si128((__m128i *) &paths[56], m15);
if (norm)
SSE_NORMALIZE_K7(m4, m1, m5, m3, m6, m2,
m7, m11, m0, m8, m9, m10)
_mm_store_si128((__m128i *) &sums[0], m4);
_mm_store_si128((__m128i *) &sums[8], m5);
_mm_store_si128((__m128i *) &sums[16], m6);
_mm_store_si128((__m128i *) &sums[24], m7);
_mm_store_si128((__m128i *) &sums[32], m1);
_mm_store_si128((__m128i *) &sums[40], m3);
_mm_store_si128((__m128i *) &sums[48], m2);
_mm_store_si128((__m128i *) &sums[56], m11);
}
/* Combined BMU/PMU (K=7, N=3 and N=4)
* Compute branch metrics followed by path metrics for half rate 64-state
* trellis. 32 butterfly operations are computed. Deinterleave path
* metrics before computing branch metrics as in the half rate case.
*/
__always_inline static void _sse_metrics_k7_n4(const int16_t *val,
const int16_t *out, int16_t *sums, int16_t *paths, int norm)
{
__m128i m0, m1, m2, m3, m4, m5, m6, m7;
__m128i m8, m9, m10, m11, m12, m13, m14, m15;
/* (PMU) Load accumulated path metrics */
m0 = _mm_load_si128((__m128i *) &sums[0]);
m1 = _mm_load_si128((__m128i *) &sums[8]);
m2 = _mm_load_si128((__m128i *) &sums[16]);
m3 = _mm_load_si128((__m128i *) &sums[24]);
m4 = _mm_load_si128((__m128i *) &sums[32]);
m5 = _mm_load_si128((__m128i *) &sums[40]);
m6 = _mm_load_si128((__m128i *) &sums[48]);
m7 = _mm_load_si128((__m128i *) &sums[56]);
/* (PMU) Deinterleave into even and odd packed registers */
SSE_DEINTERLEAVE_K7(m0, m1, m2, m3 ,m4 ,m5, m6, m7,
m8, m9, m10, m11, m12, m13, m14, m15)
/* (BMU) Load and expand 8-bit input out to 16-bits */
m7 = _mm_castpd_si128(_mm_loaddup_pd((double const *) val));
/* (BMU) Load and compute branch metrics */
m0 = _mm_load_si128((__m128i *) &out[0]);
m1 = _mm_load_si128((__m128i *) &out[8]);
m2 = _mm_load_si128((__m128i *) &out[16]);
m3 = _mm_load_si128((__m128i *) &out[24]);
SSE_BRANCH_METRIC_N4(m0, m1, m2, m3, m7, m4)
m0 = _mm_load_si128((__m128i *) &out[32]);
m1 = _mm_load_si128((__m128i *) &out[40]);
m2 = _mm_load_si128((__m128i *) &out[48]);
m3 = _mm_load_si128((__m128i *) &out[56]);
SSE_BRANCH_METRIC_N4(m0, m1, m2, m3, m7, m5)
m0 = _mm_load_si128((__m128i *) &out[64]);
m1 = _mm_load_si128((__m128i *) &out[72]);
m2 = _mm_load_si128((__m128i *) &out[80]);
m3 = _mm_load_si128((__m128i *) &out[88]);
SSE_BRANCH_METRIC_N4(m0, m1, m2, m3, m7, m6)
m0 = _mm_load_si128((__m128i *) &out[96]);
m1 = _mm_load_si128((__m128i *) &out[104]);
m2 = _mm_load_si128((__m128i *) &out[112]);
m3 = _mm_load_si128((__m128i *) &out[120]);
SSE_BRANCH_METRIC_N4(m0, m1, m2, m3, m7, m7)
/* (PMU) Butterflies: 0-15 */
SSE_BUTTERFLY(m8, m9, m4, m0, m1)
SSE_BUTTERFLY(m10, m11, m5, m2, m3)
_mm_store_si128((__m128i *) &paths[0], m0);
_mm_store_si128((__m128i *) &paths[8], m2);
_mm_store_si128((__m128i *) &paths[32], m9);
_mm_store_si128((__m128i *) &paths[40], m11);
/* (PMU) Butterflies: 17-31 */
SSE_BUTTERFLY(m12, m13, m6, m0, m2)
SSE_BUTTERFLY(m14, m15, m7, m9, m11)
_mm_store_si128((__m128i *) &paths[16], m0);
_mm_store_si128((__m128i *) &paths[24], m9);
_mm_store_si128((__m128i *) &paths[48], m13);
_mm_store_si128((__m128i *) &paths[56], m15);
if (norm)
SSE_NORMALIZE_K7(m4, m1, m5, m3, m6, m2,
m7, m11, m0, m8, m9, m10)
_mm_store_si128((__m128i *) &sums[0], m4);
_mm_store_si128((__m128i *) &sums[8], m5);
_mm_store_si128((__m128i *) &sums[16], m6);
_mm_store_si128((__m128i *) &sums[24], m7);
_mm_store_si128((__m128i *) &sums[32], m1);
_mm_store_si128((__m128i *) &sums[40], m3);
_mm_store_si128((__m128i *) &sums[48], m2);
_mm_store_si128((__m128i *) &sums[56], m11);
}
|