1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
|
/* (C) 2009 by Harald Welte <laforge@gnumonks.org>
* (C) 2012 Ivan Klyuchnikov
* (C) 2015 by sysmocom - s.f.m.c. GmbH
*
* All Rights Reserved
*
* SPDX-License-Identifier: GPL-2.0+
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
*/
/*! \addtogroup bitvec
* @{
* Osmocom bit vector abstraction utility routines.
*
* These functions assume a MSB (most significant bit) first layout of the
* bits, so that for instance the 5 bit number abcde (a is MSB) can be
* embedded into a byte sequence like in xxxxxxab cdexxxxx. The bit count
* starts with the MSB, so the bits in a byte are numbered (MSB) 01234567 (LSB).
* Note that there are other incompatible encodings, like it is used
* for the EGPRS RLC data block headers (there the bits are numbered from LSB
* to MSB).
*
* \file bitvec.c */
#include <errno.h>
#include <stdint.h>
#include <string.h>
#include <stdio.h>
#include <stdbool.h>
#include <osmocom/core/bits.h>
#include <osmocom/core/bitvec.h>
#include <osmocom/core/panic.h>
#define BITNUM_FROM_COMP(byte, bit) ((byte*8)+bit)
static inline unsigned int bytenum_from_bitnum(unsigned int bitnum)
{
unsigned int bytenum = bitnum / 8;
return bytenum;
}
/* convert ZERO/ONE/L/H to a bitmask at given pos in a byte */
static uint8_t bitval2mask(enum bit_value bit, uint8_t bitnum)
{
int bitval;
switch (bit) {
case ZERO:
bitval = (0 << bitnum);
break;
case ONE:
bitval = (1 << bitnum);
break;
case L:
bitval = ((0x2b ^ (0 << bitnum)) & (1 << bitnum));
break;
case H:
bitval = ((0x2b ^ (1 << bitnum)) & (1 << bitnum));
break;
default:
return 0;
}
return bitval;
}
/*! check if the bit is 0 or 1 for a given position inside a bitvec
* \param[in] bv the bit vector on which to check
* \param[in] bitnr the bit number inside the bit vector to check
* \return value of the requested bit
*/
enum bit_value bitvec_get_bit_pos(const struct bitvec *bv, unsigned int bitnr)
{
unsigned int bytenum = bytenum_from_bitnum(bitnr);
unsigned int bitnum = 7 - (bitnr % 8);
uint8_t bitval;
if (bytenum >= bv->data_len)
return -EINVAL;
bitval = bitval2mask(ONE, bitnum);
if (bv->data[bytenum] & bitval)
return ONE;
return ZERO;
}
/*! check if the bit is L or H for a given position inside a bitvec
* \param[in] bv the bit vector on which to check
* \param[in] bitnr the bit number inside the bit vector to check
* \return value of the requested bit
*/
enum bit_value bitvec_get_bit_pos_high(const struct bitvec *bv,
unsigned int bitnr)
{
unsigned int bytenum = bytenum_from_bitnum(bitnr);
unsigned int bitnum = 7 - (bitnr % 8);
uint8_t bitval;
if (bytenum >= bv->data_len)
return -EINVAL;
bitval = bitval2mask(H, bitnum);
if ((bv->data[bytenum] & (1 << bitnum)) == bitval)
return H;
return L;
}
/*! get the Nth set bit inside the bit vector
* \param[in] bv the bit vector to use
* \param[in] n the bit number to get
* \returns the bit number (offset) of the Nth set bit in \a bv
*/
unsigned int bitvec_get_nth_set_bit(const struct bitvec *bv, unsigned int n)
{
unsigned int i, k = 0;
for (i = 0; i < bv->data_len*8; i++) {
if (bitvec_get_bit_pos(bv, i) == ONE) {
k++;
if (k == n)
return i;
}
}
return 0;
}
/*! set a bit at given position in a bit vector
* \param[in] bv bit vector on which to operate
* \param[in] bitnr number of bit to be set
* \param[in] bit value to which the bit is to be set
* \returns 0 on success, negative value on error
*/
inline int bitvec_set_bit_pos(struct bitvec *bv, unsigned int bitnr,
enum bit_value bit)
{
unsigned int bytenum = bytenum_from_bitnum(bitnr);
unsigned int bitnum = 7 - (bitnr % 8);
uint8_t bitval;
if (bytenum >= bv->data_len)
return -EINVAL;
/* first clear the bit */
bitval = bitval2mask(ONE, bitnum);
bv->data[bytenum] &= ~bitval;
/* then set it to desired value */
bitval = bitval2mask(bit, bitnum);
bv->data[bytenum] |= bitval;
return 0;
}
/*! set the next bit inside a bitvec
* \param[in] bv bit vector to be used
* \param[in] bit value of the bit to be set
* \returns 0 on success, negative value on error
*/
inline int bitvec_set_bit(struct bitvec *bv, enum bit_value bit)
{
int rc;
rc = bitvec_set_bit_pos(bv, bv->cur_bit, bit);
if (!rc)
bv->cur_bit++;
return rc;
}
/*! get the next bit (low/high) inside a bitvec
* \return value of th next bit in the vector */
int bitvec_get_bit_high(struct bitvec *bv)
{
int rc;
rc = bitvec_get_bit_pos_high(bv, bv->cur_bit);
if (rc >= 0)
bv->cur_bit++;
return rc;
}
/*! set multiple bits (based on array of bitvals) at current pos
* \param[in] bv bit vector
* \param[in] bits array of \ref bit_value
* \param[in] count number of bits to set
* \return 0 on success; negative in case of error */
int bitvec_set_bits(struct bitvec *bv, const enum bit_value *bits, unsigned int count)
{
int i, rc;
for (i = 0; i < count; i++) {
rc = bitvec_set_bit(bv, bits[i]);
if (rc)
return rc;
}
return 0;
}
/*! set multiple bits (based on numeric value) at current pos.
* \param[in] bv bit vector.
* \param[in] v mask representing which bits needs to be set.
* \param[in] num_bits number of meaningful bits in the mask.
* \param[in] use_lh whether to interpret the bits as L/H values or as 0/1.
* \return 0 on success; negative in case of error. */
int bitvec_set_u64(struct bitvec *bv, uint64_t v, uint8_t num_bits, bool use_lh)
{
uint8_t i;
if (num_bits > 64)
return -E2BIG;
for (i = 0; i < num_bits; i++) {
int rc;
enum bit_value bit = use_lh ? L : 0;
if (v & ((uint64_t)1 << (num_bits - i - 1)))
bit = use_lh ? H : 1;
rc = bitvec_set_bit(bv, bit);
if (rc != 0)
return rc;
}
return 0;
}
/*! set multiple bits (based on numeric value) at current pos.
* \return 0 in case of success; negative in case of error. */
int bitvec_set_uint(struct bitvec *bv, unsigned int ui, unsigned int num_bits)
{
return bitvec_set_u64(bv, ui, num_bits, false);
}
/*! get multiple bits (num_bits) from beginning of vector (MSB side)
* \return 16bit signed integer retrieved from bit vector */
int16_t bitvec_get_int16_msb(const struct bitvec *bv, unsigned int num_bits)
{
if (num_bits > 15 || bv->cur_bit < num_bits)
return -EINVAL;
if (num_bits < 9)
return bv->data[0] >> (8 - num_bits);
return osmo_load16be(bv->data) >> (16 - num_bits);
}
/*! get multiple bits (based on numeric value) from current pos
* \return integer value retrieved from bit vector */
int bitvec_get_uint(struct bitvec *bv, unsigned int num_bits)
{
int i;
unsigned int ui = 0;
for (i = 0; i < num_bits; i++) {
int bit = bitvec_get_bit_pos(bv, bv->cur_bit);
if (bit < 0)
return bit;
if (bit)
ui |= (1 << (num_bits - i - 1));
bv->cur_bit++;
}
return ui;
}
/*! fill num_bits with \fill starting from the current position
* \return 0 on success; negative otherwise (out of vector boundary)
*/
int bitvec_fill(struct bitvec *bv, unsigned int num_bits, enum bit_value fill)
{
unsigned i, stop = bv->cur_bit + num_bits;
for (i = bv->cur_bit; i < stop; i++)
if (bitvec_set_bit(bv, fill) < 0)
return -EINVAL;
return 0;
}
/*! pad all remaining bits up to num_bits
* \return 0 on success; negative otherwise */
int bitvec_spare_padding(struct bitvec *bv, unsigned int up_to_bit)
{
int n = up_to_bit - bv->cur_bit + 1;
if (n < 1)
return 0;
return bitvec_fill(bv, n, L);
}
/*! find first bit set in bit vector
* \return 0 on success; negative otherwise */
int bitvec_find_bit_pos(const struct bitvec *bv, unsigned int n,
enum bit_value val)
{
unsigned int i;
for (i = n; i < bv->data_len*8; i++) {
if (bitvec_get_bit_pos(bv, i) == val)
return i;
}
return -1;
}
/*! get multiple bytes from current pos
* Assumes MSB first encoding.
* \param[in] bv bit vector
* \param[in] bytes array
* \param[in] count number of bytes to copy
* \return 0 on success; negative otherwise
*/
int bitvec_get_bytes(struct bitvec *bv, uint8_t *bytes, unsigned int count)
{
int byte_offs = bytenum_from_bitnum(bv->cur_bit);
int bit_offs = bv->cur_bit % 8;
uint8_t c, last_c;
int i;
uint8_t *src;
if (byte_offs + count + (bit_offs ? 1 : 0) > bv->data_len)
return -EINVAL;
if (bit_offs == 0) {
memcpy(bytes, bv->data + byte_offs, count);
} else {
src = bv->data + byte_offs;
last_c = *(src++);
for (i = count; i > 0; i--) {
c = *(src++);
*(bytes++) =
(last_c << bit_offs) |
(c >> (8 - bit_offs));
last_c = c;
}
}
bv->cur_bit += count * 8;
return 0;
}
/*! set multiple bytes at current pos
* Assumes MSB first encoding.
* \param[in] bv bit vector
* \param[in] bytes array
* \param[in] count number of bytes to copy
* \return 0 on success; negative otherwise
*/
int bitvec_set_bytes(struct bitvec *bv, const uint8_t *bytes, unsigned int count)
{
int byte_offs = bytenum_from_bitnum(bv->cur_bit);
int bit_offs = bv->cur_bit % 8;
uint8_t c, last_c;
int i;
uint8_t *dst;
if (byte_offs + count + (bit_offs ? 1 : 0) > bv->data_len)
return -EINVAL;
if (bit_offs == 0) {
memcpy(bv->data + byte_offs, bytes, count);
} else if (count > 0) {
dst = bv->data + byte_offs;
/* Get lower bits of first dst byte */
last_c = *dst >> (8 - bit_offs);
for (i = count; i > 0; i--) {
c = *(bytes++);
*(dst++) =
(last_c << (8 - bit_offs)) |
(c >> bit_offs);
last_c = c;
}
/* Overwrite lower bits of N+1 dst byte */
*dst = (*dst & ((1 << (8 - bit_offs)) - 1)) |
(last_c << (8 - bit_offs));
}
bv->cur_bit += count * 8;
return 0;
}
/*! Allocate a bit vector
* \param[in] size Number of bytes in the vector
* \param[in] ctx Context from which to allocate
* \return pointer to allocated vector; NULL in case of error */
struct bitvec *bitvec_alloc(unsigned int size, TALLOC_CTX *ctx)
{
struct bitvec *bv = talloc_zero(ctx, struct bitvec);
if (!bv)
return NULL;
bv->data = talloc_zero_array(bv, uint8_t, size);
if (!(bv->data)) {
talloc_free(bv);
return NULL;
}
bv->data_len = size;
bv->cur_bit = 0;
return bv;
}
/*! Free a bit vector (release its memory)
* \param[in] bit vector to free */
void bitvec_free(struct bitvec *bv)
{
talloc_free(bv->data);
talloc_free(bv);
}
/*! Export a bit vector to a buffer
* \param[in] bitvec (unpacked bits)
* \param[out] buffer for the unpacked bits
* \return number of bytes (= bits) copied */
unsigned int bitvec_pack(const struct bitvec *bv, uint8_t *buffer)
{
unsigned int i = 0;
for (i = 0; i < bv->data_len; i++)
buffer[i] = bv->data[i];
return i;
}
/*! Copy buffer of unpacked bits into bit vector
* \param[in] buffer unpacked input bits
* \param[out] bv unpacked bit vector
* \return number of bytes (= bits) copied */
unsigned int bitvec_unpack(struct bitvec *bv, const uint8_t *buffer)
{
unsigned int i = 0;
for (i = 0; i < bv->data_len; i++)
bv->data[i] = buffer[i];
return i;
}
/*! read hexadecimap string into a bit vector
* \param[in] src string containing hex digits
* \param[out] bv unpacked bit vector
* \return 0 in case of success; 1 in case of error
*/
int bitvec_unhex(struct bitvec *bv, const char *src)
{
unsigned i;
unsigned val;
unsigned write_index = 0;
unsigned digits = bv->data_len * 2;
for (i = 0; i < digits; i++) {
if (sscanf(src + i, "%1x", &val) < 1) {
return 1;
}
bitvec_write_field(bv, &write_index, val, 4);
}
return 0;
}
/*! read part of the vector
* \param[in] bv The boolean vector to work on
* \param[in,out] read_index Where reading supposed to start in the vector
* \param[in] len How many bits to read from vector
* \returns read bits or negative value on error
*/
uint64_t bitvec_read_field(struct bitvec *bv, unsigned int *read_index, unsigned int len)
{
unsigned int i;
uint64_t ui = 0;
bv->cur_bit = *read_index;
for (i = 0; i < len; i++) {
int bit = bitvec_get_bit_pos((const struct bitvec *)bv, bv->cur_bit);
if (bit < 0)
return bit;
if (bit)
ui |= ((uint64_t)1 << (len - i - 1));
bv->cur_bit++;
}
*read_index += len;
return ui;
}
/*! write into the vector
* \param[in] bv The boolean vector to work on
* \param[in,out] write_index Where writing supposed to start in the vector
* \param[in] len How many bits to write
* \returns next write index or negative value on error
*/
int bitvec_write_field(struct bitvec *bv, unsigned int *write_index, uint64_t val, unsigned int len)
{
int rc;
bv->cur_bit = *write_index;
rc = bitvec_set_u64(bv, val, len, false);
if (rc != 0)
return rc;
*write_index += len;
return 0;
}
/*! convert enum to corresponding character
* \param v input value (bit)
* \return single character, either 0, 1, L or H */
char bit_value_to_char(enum bit_value v)
{
switch (v) {
case ZERO: return '0';
case ONE: return '1';
case L: return 'L';
case H: return 'H';
default: osmo_panic("unexpected input in bit_value_to_char"); return 'X';
}
}
/*! prints bit vector to provided string
* It's caller's responsibility to ensure that we won't shoot him in the foot:
* the provided buffer should be at lest cur_bit + 1 bytes long
*/
void bitvec_to_string_r(const struct bitvec *bv, char *str)
{
unsigned i, pos = 0;
char *cur = str;
for (i = 0; i < bv->cur_bit; i++) {
if (0 == i % 8)
*cur++ = ' ';
*cur++ = bit_value_to_char(bitvec_get_bit_pos(bv, i));
pos++;
}
*cur = 0;
}
/* we assume that x have at least 1 non-b bit */
static inline unsigned leading_bits(uint8_t x, bool b)
{
if (b) {
if (x < 0x80) return 0;
if (x < 0xC0) return 1;
if (x < 0xE0) return 2;
if (x < 0xF0) return 3;
if (x < 0xF8) return 4;
if (x < 0xFC) return 5;
if (x < 0xFE) return 6;
} else {
if (x > 0x7F) return 0;
if (x > 0x3F) return 1;
if (x > 0x1F) return 2;
if (x > 0xF) return 3;
if (x > 7) return 4;
if (x > 3) return 5;
if (x > 1) return 6;
}
return 7;
}
/*! force bit vector to all 0 and current bit to the beginnig of the vector */
void bitvec_zero(struct bitvec *bv)
{
bv->cur_bit = 0;
memset(bv->data, 0, bv->data_len);
}
/*! Return number (bits) of uninterrupted bit run in vector starting from the MSB
* \param[in] bv The boolean vector to work on
* \param[in] b The boolean, sequence of which is looked at from the vector start
* \returns Number of consecutive bits of \p b in \p bv
*/
unsigned bitvec_rl(const struct bitvec *bv, bool b)
{
unsigned i;
for (i = 0; i < (bv->cur_bit % 8 ? bv->cur_bit / 8 + 1 : bv->cur_bit / 8); i++) {
if ( (b ? 0xFF : 0) != bv->data[i])
return i * 8 + leading_bits(bv->data[i], b);
}
return bv->cur_bit;
}
/*! Return number (bits) of uninterrupted bit run in vector
* starting from the current bit
* \param[in] bv The boolean vector to work on
* \param[in] b The boolean, sequence of 1's or 0's to be checked
* \param[in] max_bits Total Number of Uncmopresed bits
* \returns Number of consecutive bits of \p b in \p bv and cur_bit will
* \go to cur_bit + number of consecutive bit
*/
unsigned bitvec_rl_curbit(struct bitvec *bv, bool b, int max_bits)
{
unsigned i = 0;
unsigned j = 8;
int temp_res = 0;
int count = 0;
unsigned readIndex = bv->cur_bit;
unsigned remaining_bits = max_bits % 8;
unsigned remaining_bytes = max_bits / 8;
unsigned byte_mask = 0xFF;
if (readIndex % 8) {
for (j -= (readIndex % 8) ; j > 0 ; j--) {
if (readIndex < max_bits && bitvec_read_field(bv, &readIndex, 1) == b)
temp_res++;
else {
bv->cur_bit--;
return temp_res;
}
}
}
for (i = (readIndex / 8);
i < (remaining_bits ? remaining_bytes + 1 : remaining_bytes);
i++, count++) {
if ((b ? byte_mask : 0) != bv->data[i]) {
bv->cur_bit = (count * 8 +
leading_bits(bv->data[i], b) + readIndex);
return count * 8 +
leading_bits(bv->data[i], b) + temp_res;
}
}
bv->cur_bit = (temp_res + (count * 8)) + readIndex;
if (bv->cur_bit > max_bits)
bv->cur_bit = max_bits;
return (bv->cur_bit - readIndex + temp_res);
}
/*! Shifts bitvec to the left, n MSB bits lost */
void bitvec_shiftl(struct bitvec *bv, unsigned n)
{
if (0 == n)
return;
if (n >= bv->cur_bit) {
bitvec_zero(bv);
return;
}
memmove(bv->data, bv->data + n / 8, bv->data_len - n / 8);
uint8_t tmp[2];
unsigned i;
for (i = 0; i < bv->data_len - 2; i++) {
uint16_t t = osmo_load16be(bv->data + i);
osmo_store16be(t << (n % 8), &tmp);
bv->data[i] = tmp[0];
}
bv->data[bv->data_len - 1] <<= (n % 8);
bv->cur_bit -= n;
}
/*! Add given array to bitvec
* \param[in,out] bv bit vector to work with
* \param[in] array elements to be added
* \param[in] array_len length of array
* \param[in] dry_run indicates whether to return number of bits required
* instead of adding anything to bv for real
* \param[in] num_bits number of bits to consider in each element of array
* \returns number of bits necessary to add array elements if dry_run is true,
* 0 otherwise (only in this case bv is actually changed)
*
* N. B: no length checks are performed on bv - it's caller's job to ensure
* enough space is available - for example by calling with dry_run = true first.
*
* Useful for common pattern in CSN.1 spec which looks like:
* { 1 < XXX : bit (num_bits) > } ** 0
* which means repeat any times (between 0 and infinity),
* start each repetition with 1, mark end of repetitions with 0 bit
* see app. note in 3GPP TS 24.007 § B.2.1 Rule A2
*/
unsigned int bitvec_add_array(struct bitvec *bv, const uint32_t *array,
unsigned int array_len, bool dry_run,
unsigned int num_bits)
{
unsigned i, bits = 1; /* account for stop bit */
for (i = 0; i < array_len; i++) {
if (dry_run) {
bits += (1 + num_bits);
} else {
bitvec_set_bit(bv, 1);
bitvec_set_uint(bv, array[i], num_bits);
}
}
if (dry_run)
return bits;
bitvec_set_bit(bv, 0); /* stop bit - end of the sequence */
return 0;
}
/*! @} */
|