diff options
Diffstat (limited to 'utils')
-rw-r--r-- | utils/conv_gen.py | 494 |
1 files changed, 494 insertions, 0 deletions
diff --git a/utils/conv_gen.py b/utils/conv_gen.py new file mode 100644 index 00000000..1377fcae --- /dev/null +++ b/utils/conv_gen.py @@ -0,0 +1,494 @@ +#!/usr/bin/python + +mod_license = """ +/* + * Copyright (C) 2011-2016 Sylvain Munaut <tnt@246tNt.com> + * Copyright (C) 2016 sysmocom s.f.m.c. GmbH + * + * All Rights Reserved + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License along + * with this program; if not, write to the Free Software Foundation, Inc., + * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. + */ +""" + +import sys, os, math + +class ConvolutionalCode(object): + + def __init__(self, block_len, polys, name = "call-me", description = "LOL", puncture = []): + # Save simple params + self.block_len = block_len + self.k = 1 + self.puncture = puncture + self.rate_inv = len(polys) + + # Infos + self.name = name + self.description = description + + # Handle polynoms (and check for recursion) + self.polys = [(1, 1) if x[0] == x[1] else x for x in polys] + + # Determine the polynomial degree + for (x, y) in polys: + self.k = max(self.k, int(math.floor(math.log(max(x, y), 2)))) + self.k = self.k + 1 + + self.poly_divider = 1 + rp = [x[1] for x in self.polys if x[1] != 1] + if rp: + if not all([x == rp[0] for x in rp]): + raise ValueError("Bad polynoms: Can't have multiple different divider polynoms !") + if not all([x[0] == 1 for x in polys if x[1] == 1]): + raise ValueError("Bad polynoms: Can't have a '1' divider with a non '1' dividend in a recursive code") + self.poly_divider = rp[0] + + @property + def recursive(self): + return self.poly_divider != 1 + + @property + def _state_mask(self): + return (1 << (self.k - 1)) - 1 + + def next_state(self, state, bit): + nb = combine( + (state << 1) | bit, + self.poly_divider, + self.k, + ) + return ((state << 1) | nb) & self._state_mask + + def next_term_state(self, state): + return (state << 1) & self._state_mask + + def next_output(self, state, bit, ns = None): + # Next state bit + if ns is None: + ns = self.next_state(state, bit) + + src = (ns & 1) | (state << 1) + + # Scan polynoms + rv = [] + for p_n, p_d in self.polys: + if self.recursive and p_d == 1: + o = bit # No choice ... (systematic output in recursive case) + else: + o = combine(src, p_n, self.k) + rv.append(o) + + return rv + + def next_term_output(self, state, ns = None): + # Next state bit + if ns is None: + ns = self.next_term_state(state) + + src = (ns & 1) | (state << 1) + + # Scan polynoms + rv = [] + for p_n, p_d in self.polys: + if self.recursive and p_d == 1: + # Systematic output are replaced when in 'termination' mode + o = combine(src, self.poly_divider, self.k) + else: + o = combine(src, p_n, self.k) + rv.append(o) + + return rv + + def next(self, state, bit): + ns = self.next_state(state, bit) + nb = self.next_output(state, bit, ns = ns) + return ns, nb + + def next_term(self, state): + ns = self.next_term_state(state) + nb = self.next_term_output(state, ns = ns) + return ns, nb + + def _print_term(self, fi, num_states, pack = False): + d = [] + for state in range(num_states): + x = pack(self.next_term_output(state)) if pack else self.next_term_state(state) + d.append("%d, " % x) + print >>fi, "\t%s" % ''.join(d) + + def _print_x(self, fi, num_states, pack = False): + for state in range(num_states): + x0 = pack(self.next_output(state, 0)) if pack else self.next_state(state, 0) + x1 = pack(self.next_output(state, 1)) if pack else self.next_state(state, 1) + print >>fi, "\t{ %2d, %2d }," % (x0, x1) + + def gen_tables(self, pref, fi): + pack = lambda n: sum([x << (self.rate_inv - i - 1) for i, x in enumerate(n)]) + num_states = 1 << (self.k - 1) + print >>fi, "\nstatic const uint8_t %s_state[][2] = {" % self.name + self._print_x(fi, num_states) + print >>fi, "};\n\nstatic const uint8_t %s_output[][2] = {" % self.name + self._print_x(fi, num_states, pack) + print >>fi, "};" + + if self.recursive: + print >>fi, "\nstatic const uint8_t %s_term_state[] = {" % self.name + self._print_term(fi, num_states) + print >>fi, "};\n\nstatic const uint8_t %s_term_output[] = {" % self.name + self._print_term(fi, num_states, pack) + print >>fi, "};" + + if len(self.puncture): + print >>fi, "\nstatic const int %s_puncture[] = {" % self.name + for p in self.puncture: + print >>fi, "\t%d," % p + print >>fi, "};" + + print >>fi, "\n/* %s */" % self.description + print >>fi, "const struct osmo_conv_code %s_%s = {" % (pref, self.name) + print >>fi, "\t.N = %d," % self.rate_inv + print >>fi, "\t.K = %d," % self.k + print >>fi, "\t.len = %d," % self.block_len + print >>fi, "\t.next_output = %s_output," % self.name + print >>fi, "\t.next_state = %s_state," % self.name + if self.recursive: + print >>fi, "\t.next_term_output = %s_term_output," % self.name + print >>fi, "\t.next_term_state = %s_term_state," % self.name + if len(self.puncture): + print >>fi, "\t.puncture = %s_puncture," % self.name + print >>fi, "};" + +poly = lambda *args: sum([(1 << x) for x in args]) + +def combine(src, sel, nb): + x = src & sel + fn_xor = lambda x, y: x ^ y + return reduce(fn_xor, [(x >> n) & 1 for n in range(nb)]) + +# Polynomials according to 3GPP TS 05.03 Annex B +G0 = poly(0, 3, 4) +G1 = poly(0, 1, 3, 4) +G2 = poly(0, 2, 4) +G3 = poly(0, 1, 2, 3, 4) +G4 = poly(0, 2, 3, 5, 6) +G5 = poly(0, 1, 4, 6) +G6 = poly(0, 1, 2, 3, 4, 6) +G7 = poly(0, 1, 2, 3, 6) + +CCH_poly = [ + ( G0, 1 ), + ( G1, 1 ) +] + +xCCH = ConvolutionalCode( + 224, + CCH_poly, + name = "xcch", + description =""" *CCH convolutional code: + 228 bits blocks, rate 1/2, k = 5 + G0 = 1 + D3 + D4 + G1 = 1 + D + D3 + D4 +""" +) + +CS2 = ConvolutionalCode( + 290, + CCH_poly, + puncture = [ + 15, 19, 23, 27, 31, 35, 43, 47, 51, 55, 59, 63, 67, 71, + 75, 79, 83, 91, 95, 99, 103, 107, 111, 115, 119, 123, 127, 131, + 139, 143, 147, 151, 155, 159, 163, 167, 171, 175, 179, 187, 191, 195, + 199, 203, 207, 211, 215, 219, 223, 227, 235, 239, 243, 247, 251, 255, + 259, 263, 267, 271, 275, 283, 287, 291, 295, 299, 303, 307, 311, 315, + 319, 323, 331, 335, 339, 343, 347, 351, 355, 359, 363, 367, 371, 379, + 383, 387, 391, 395, 399, 403, 407, 411, 415, 419, 427, 431, 435, 439, + 443, 447, 451, 455, 459, 463, 467, 475, 479, 483, 487, 491, 495, 499, + 503, 507, 511, 515, 523, 527, 531, 535, 539, 543, 547, 551, 555, 559, + 563, 571, 575, 579, 583, 587, -1 + ], + name = "cs2", + description =""" CS2 convolutional code: + G0 = 1 + D3 + D4 + G1 = 1 + D + D3 + D4 +""" +) + +CS3 = ConvolutionalCode( + 334, + CCH_poly, + puncture = [ + 15, 17, 21, 23, 27, 29, 33, 35, 39, 41, 45, 47, 51, 53, + 57, 59, 63, 65, 69, 71, 75, 77, 81, 83, 87, 89, 93, 95, + 99, 101, 105, 107, 111, 113, 117, 119, 123, 125, 129, 131, 135, 137, + 141, 143, 147, 149, 153, 155, 159, 161, 165, 167, 171, 173, 177, 179, + 183, 185, 189, 191, 195, 197, 201, 203, 207, 209, 213, 215, 219, 221, + 225, 227, 231, 233, 237, 239, 243, 245, 249, 251, 255, 257, 261, 263, + 267, 269, 273, 275, 279, 281, 285, 287, 291, 293, 297, 299, 303, 305, + 309, 311, 315, 317, 321, 323, 327, 329, 333, 335, 339, 341, 345, 347, + 351, 353, 357, 359, 363, 365, 369, 371, 375, 377, 381, 383, 387, 389, + 393, 395, 399, 401, 405, 407, 411, 413, 417, 419, 423, 425, 429, 431, + 435, 437, 441, 443, 447, 449, 453, 455, 459, 461, 465, 467, 471, 473, + 477, 479, 483, 485, 489, 491, 495, 497, 501, 503, 507, 509, 513, 515, + 519, 521, 525, 527, 531, 533, 537, 539, 543, 545, 549, 551, 555, 557, + 561, 563, 567, 569, 573, 575, 579, 581, 585, 587, 591, 593, 597, 599, + 603, 605, 609, 611, 615, 617, 621, 623, 627, 629, 633, 635, 639, 641, + 645, 647, 651, 653, 657, 659, 663, 665, 669, 671, -1 + ], + name = "cs3", + description =""" CS3 convolutional code: + G0 = 1 + D3 + D4 + G1 = 1 + D + D3 + D4 +""" +) + +TCH_AFS_12_2 = ConvolutionalCode( + 250, + [ + ( 1, 1 ), + ( G1, G0 ), + ], + puncture = [ + 321, 325, 329, 333, 337, 341, 345, 349, 353, 357, 361, 363, + 365, 369, 373, 377, 379, 381, 385, 389, 393, 395, 397, 401, + 405, 409, 411, 413, 417, 421, 425, 427, 429, 433, 437, 441, + 443, 445, 449, 453, 457, 459, 461, 465, 469, 473, 475, 477, + 481, 485, 489, 491, 493, 495, 497, 499, 501, 503, 505, 507, + -1 + ], + name = 'tch_afs_12_2', + description = """TCH/AFS 12.2 convolutional code: + 250 bits block, rate 1/2, punctured + G0/G0 = 1 + G1/G0 = 1 + D + D3 + D4 / 1 + D3 + D4 +""" +) + +TCH_AFS_10_2 = ConvolutionalCode( + 210, + [ + ( G1, G3 ), + ( G2, G3 ), + ( 1, 1 ), + ], + puncture = [ + 1, 4, 7, 10, 16, 19, 22, 28, 31, 34, 40, 43, + 46, 52, 55, 58, 64, 67, 70, 76, 79, 82, 88, 91, + 94, 100, 103, 106, 112, 115, 118, 124, 127, 130, 136, 139, + 142, 148, 151, 154, 160, 163, 166, 172, 175, 178, 184, 187, + 190, 196, 199, 202, 208, 211, 214, 220, 223, 226, 232, 235, + 238, 244, 247, 250, 256, 259, 262, 268, 271, 274, 280, 283, + 286, 292, 295, 298, 304, 307, 310, 316, 319, 322, 325, 328, + 331, 334, 337, 340, 343, 346, 349, 352, 355, 358, 361, 364, + 367, 370, 373, 376, 379, 382, 385, 388, 391, 394, 397, 400, + 403, 406, 409, 412, 415, 418, 421, 424, 427, 430, 433, 436, + 439, 442, 445, 448, 451, 454, 457, 460, 463, 466, 469, 472, + 475, 478, 481, 484, 487, 490, 493, 496, 499, 502, 505, 508, + 511, 514, 517, 520, 523, 526, 529, 532, 535, 538, 541, 544, + 547, 550, 553, 556, 559, 562, 565, 568, 571, 574, 577, 580, + 583, 586, 589, 592, 595, 598, 601, 604, 607, 609, 610, 613, + 616, 619, 621, 622, 625, 627, 628, 631, 633, 634, 636, 637, + 639, 640, -1 + ], + name = 'tch_afs_10_2', + description = """TCH/AFS 10.2 kbits convolutional code: + G1/G3 = 1 + D + D3 + D4 / 1 + D + D2 + D3 + D4 + G2/G3 = 1 + D2 + D4 / 1 + D + D2 + D3 + D4 + G3/G3 = 1 +""" +) + +TCH_AFS_7_95 = ConvolutionalCode( + 165, + [ + ( 1, 1 ), + ( G5, G4 ), + ( G6, G4 ), + ], + puncture = [ + 1, 2, 4, 5, 8, 22, 70, 118, 166, 214, 262, 310, + 317, 319, 325, 332, 334, 341, 343, 349, 356, 358, 365, 367, + 373, 380, 382, 385, 389, 391, 397, 404, 406, 409, 413, 415, + 421, 428, 430, 433, 437, 439, 445, 452, 454, 457, 461, 463, + 469, 476, 478, 481, 485, 487, 490, 493, 500, 502, 503, 505, + 506, 508, 509, 511, 512, -1 + ], + name = 'tch_afs_7_95', + description = """TCH/AFS 7.95 kbits convolutional code: + G4/G4 = 1 + G5/G4 = 1 + D + D4 + D6 / 1 + D2 + D3 + D5 + D6 + G6/G4 = 1 + D + D2 + D3 + D4 + D6 / 1 + D2 + D3 + D5 + D6 +""" +) + +TCH_AFS_7_4 = ConvolutionalCode( + 154, + [ + ( G1, G3 ), + ( G2, G3 ), + ( 1, 1 ), + ], + puncture = [ + 0, 355, 361, 367, 373, 379, 385, 391, 397, 403, 409, 415, + 421, 427, 433, 439, 445, 451, 457, 460, 463, 466, 468, 469, + 471, 472, -1 + ], + name = 'tch_afs_7_4', + description = """TCH/AFS 7.4 kbits convolutional code: + G1/G3 = 1 + D + D3 + D4 / 1 + D + D2 + D3 + D4 + G2/G3 = 1 + D2 + D4 / 1 + D + D2 + D3 + D4 + G3/G3 = 1 +""" +) + +TCH_AFS_6_7 = ConvolutionalCode( + 140, + [ + ( G1, G3 ), + ( G2, G3 ), + ( 1, 1 ), + ( 1, 1 ), + ], + puncture = [ + 1, 3, 7, 11, 15, 27, 39, 55, 67, 79, 95, 107, + 119, 135, 147, 159, 175, 187, 199, 215, 227, 239, 255, 267, + 279, 287, 291, 295, 299, 303, 307, 311, 315, 319, 323, 327, + 331, 335, 339, 343, 347, 351, 355, 359, 363, 367, 369, 371, + 375, 377, 379, 383, 385, 387, 391, 393, 395, 399, 401, 403, + 407, 409, 411, 415, 417, 419, 423, 425, 427, 431, 433, 435, + 439, 441, 443, 447, 449, 451, 455, 457, 459, 463, 465, 467, + 471, 473, 475, 479, 481, 483, 487, 489, 491, 495, 497, 499, + 503, 505, 507, 511, 513, 515, 519, 521, 523, 527, 529, 531, + 535, 537, 539, 543, 545, 547, 549, 551, 553, 555, 557, 559, + 561, 563, 565, 567, 569, 571, 573, 575, -1 + ], + name = 'tch_afs_6_7', + description = """TCH/AFS 6.7 kbits convolutional code: + G1/G3 = 1 + D + D3 + D4 / 1 + D + D2 + D3 + D4 + G2/G3 = 1 + D2 + D4 / 1 + D + D2 + D3 + D4 + G3/G3 = 1 + G3/G3 = 1 +""" +) + +TCH_AFS_5_9 = ConvolutionalCode( + 124, + [ + ( G4, G6 ), + ( G5, G6 ), + ( 1, 1), + ( 1, 1), + ], + puncture = [ + 0, 1, 3, 5, 7, 11, 15, 31, 47, 63, 79, 95, + 111, 127, 143, 159, 175, 191, 207, 223, 239, 255, 271, 287, + 303, 319, 327, 331, 335, 343, 347, 351, 359, 363, 367, 375, + 379, 383, 391, 395, 399, 407, 411, 415, 423, 427, 431, 439, + 443, 447, 455, 459, 463, 467, 471, 475, 479, 483, 487, 491, + 495, 499, 503, 507, 509, 511, 512, 513, 515, 516, 517, 519, + -1 + ], + name = 'tch_afs_5_9', + description = """TCH/AFS 5.9 kbits convolutional code: + 124 bits + G4/G6 = 1 + D2 + D3 + D5 + D6 / 1 + D + D2 + D3 + D4 + D6 + G5/G6 = 1 + D + D4 + D6 / 1 + D + D2 + D3 + D4 + D6 + G6/G6 = 1 + G6/G6 = 1 +""" +) + +TCH_AFS_5_15 = ConvolutionalCode( + 109, + [ + ( G1, G3 ), + ( G1, G3 ), + ( G2, G3 ), + ( 1, 1 ), + ( 1, 1 ), + ], + puncture = [ + 0, 4, 5, 9, 10, 14, 15, 20, 25, 30, 35, 40, + 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, + 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, + 290, 300, 310, 315, 320, 325, 330, 334, 335, 340, 344, 345, + 350, 354, 355, 360, 364, 365, 370, 374, 375, 380, 384, 385, + 390, 394, 395, 400, 404, 405, 410, 414, 415, 420, 424, 425, + 430, 434, 435, 440, 444, 445, 450, 454, 455, 460, 464, 465, + 470, 474, 475, 480, 484, 485, 490, 494, 495, 500, 504, 505, + 510, 514, 515, 520, 524, 525, 529, 530, 534, 535, 539, 540, + 544, 545, 549, 550, 554, 555, 559, 560, 564, -1 + ], + name = 'tch_afs_5_15', + description = """TCH/AFS 5.15 kbits convolutional code: + G1/G3 = 1 + D + D3 + D4 / 1 + D + D2 + D3 + D4 + G1/G3 = 1 + D + D3 + D4 / 1 + D + D2 + D3 + D4 + G2/G3 = 1 + D2 + D4 / 1 + D + D2 + D3 + D4 + G3/G3 = 1 + G3/G3 = 1 +""" +) + +TCH_AFS_4_75 = ConvolutionalCode( + 101, + [ + ( G4, G6 ), + ( G4, G6 ), + ( G5, G6 ), + ( 1, 1 ), + ( 1, 1 ), + ], + puncture = [ + 0, 1, 2, 4, 5, 7, 9, 15, 25, 35, 45, 55, + 65, 75, 85, 95, 105, 115, 125, 135, 145, 155, 165, 175, + 185, 195, 205, 215, 225, 235, 245, 255, 265, 275, 285, 295, + 305, 315, 325, 335, 345, 355, 365, 375, 385, 395, 400, 405, + 410, 415, 420, 425, 430, 435, 440, 445, 450, 455, 459, 460, + 465, 470, 475, 479, 480, 485, 490, 495, 499, 500, 505, 509, + 510, 515, 517, 519, 520, 522, 524, 525, 526, 527, 529, 530, + 531, 532, 534, -1 + ], + name = 'tch_afs_4_75', + description = """TCH/AFS 4.75 kbits convolutional code: + G4/G6 = 1 + D2 + D3 + D5 + D6 / 1 + D + D2 + D3 + D4 + D6 + G4/G6 = 1 + D2 + D3 + D5 + D6 / 1 + D + D2 + D3 + D4 + D6 + G5/G6 = 1 + D + D4 + D6 / 1 + D + D2 + D3 + D4 + D6 + G6/G6 = 1 + G6/G6 = 1 +""" +) + +def gen_c(dest, pref, code): + f = open(os.path.join(dest, 'conv_' + code.name + '_gen.c'), 'w') + print >>f, mod_license + print >>f, "#include <stdint.h>" + print >>f, "#include <osmocom/core/conv.h>" + code.gen_tables(pref, f) + +if __name__ == '__main__': + print >>sys.stderr, "Generating convolutional codes..." + prefix = "gsm0503" + path = sys.argv[1] if len(sys.argv) > 1 else os.getcwd() + gen_c(path, prefix, xCCH) + gen_c(path, prefix, CS2) + gen_c(path, prefix, CS3) + gen_c(path, prefix, TCH_AFS_12_2) + gen_c(path, prefix, TCH_AFS_10_2) + gen_c(path, prefix, TCH_AFS_7_95) + gen_c(path, prefix, TCH_AFS_7_4) + gen_c(path, prefix, TCH_AFS_6_7) + gen_c(path, prefix, TCH_AFS_5_9) + gen_c(path, prefix, TCH_AFS_5_15) + gen_c(path, prefix, TCH_AFS_4_75) + print >>sys.stderr, "\tdone." |