module Mapbox.Expression exposing ( Anchor(..) , AnchorAuto , CameraExpression , Collator , Color , DataExpression , Expression , Interpolation(..) , LineCap , LineJoin , Object , Position , RasterResampling , SymbolPlacement , TextFit , TextJustify , TextTransform , abs , acos , all , anchorAutoAuto , anchorAutoMap , anchorAutoViewport , anchorMap , anchorViewport , any , append , asin , assertArray , assertArrayOfBools , assertArrayOfFloats , assertArrayOfStrings , assertBool , assertFloat , assertObject , assertString , at , atan , bool , ceil , coalesce , collator , conditionally , cos , count , defaultCollator , divideBy , downcase , e , encode , false , featureState , float , floats , floor , geometryType , get , getProperty , greaterThan , greaterThanOrEqual , greaterThanOrEqualWithCollator , greaterThanWithCollator , has , hasProperty , heatmapDensity , id , ifElse , int , interpolate , isEqual , isEqualWithCollator , isSupportedScript , length , lessThan , lessThanOrEqual , lessThanOrEqualWithCollator , lessThanWithCollator , lineCapButt , lineCapRound , lineCapSquare , lineJoinBevel , lineJoinMiter , lineJoinRound , lineProgress , ln , ln2 , log10 , log2 , makeRGBAColor , makeRGBColor , matchesFloat , matchesStr , minus , modBy , multiply , not , notEqual , notEqualWithCollator , object , pi , plus , positionBottom , positionBottomLeft , positionBottomRight , positionCenter , positionLeft , positionRight , positionTop , positionTopLeft , positionTopRight , properties , raiseBy , rasterResamplingLinear , rasterResamplingNearest , resolvedLocale , rgba , rgbaChannels , round , sin , sqrt , step , str , strings , symbolPlacementLine , symbolPlacementLineCenter , symbolPlacementPoint , tan , textFitBoth , textFitHeight , textFitNone , textFitWidth , textJustifyCenter , textJustifyLeft , textJustifyRight , textTransformLowercase , textTransformNone , textTransformUppercase , toBool , toColor , toFloat , toString , true , typeof , upcase , zoom ) {-| Expressions form a little language that can be used to compute values for various layer properties. It is recommended to import them in the following fashion: import Mapbox.Expression as E exposing (Expression, CameraExpression, DataExpression, str, float, int, true, false) This way you can use the language without much syntactic fuss and you have easy access to the literals. ### Example You'd like to adjust font size of a town based on the number of people who live there. In plain Elm, you might wright the following function: sizeByPopulation : Dict String Int -> Int sizeByPopulation properties = Dict.get "population" properties |> Maybe.withDefault 1000 |> scale ( 0, 1000 ) ( 9, 20 ) In the expression language you can do this in a similar fassion: sizeByPopulation : Expression DataExpression Float sizeByPopulation = E.getProperty "population" |> E.toFloat 1000 |> E.interpolate E.Linear [ ( 0, int 9 ) , ( 1000, int 20 ) ] **Note**: If you are familiar with the JS version of the style spec, we have made a few changes. Argument order has been switched for many functions to support using pipeline style more naturally. Some functions use overloading in the original, these have been renamed to not be overloaded. Finally, we have chosen not to represent some parts of the spec that are superflous (especially when used from Elm), namely functions and let-in expressions. @docs Expression, DataExpression, CameraExpression @docs encode ### Types All of the types used as expression results are phantom (i.e. they don't have any runtime values but are used purely for compile-time checking). As such we use a mix of standard elm types for their familiarty: - `Float` - `String` - `Array` - `Bool` We introduce the following types: @docs Color, Object, Collator (And also a bunch of Enum types, that will be documented in the Enums section). You can use the following functions to transfer Elm values into the Expression language: @docs true, false, bool, int, float, str, rgba, floats, strings, object, collator, defaultCollator In some cases, you will need to force the type system to cooperate. The following assertions will force the type and cause a run-time error if the type is wrong: @docs assertArray, assertArrayOfStrings, assertArrayOfFloats, assertArrayOfBools, assertBool, assertFloat, assertObject, assertString You can also use these functions to explicitly cast to a particular type: @docs toBool, toColor, toFloat, toString @docs typeof ### Lookup @docs at, get, has, count, length ### Feature data @docs featureState, geometryType, id, properties, getProperty, hasProperty ### Decision The expressions in this section can be used to add conditional logic to your styles. @docs isEqual, notEqual, lessThan, lessThanOrEqual, greaterThan, greaterThanOrEqual Strings can be compared with a collator for locale specific comparisons: @docs isEqualWithCollator, notEqualWithCollator, lessThanWithCollator, lessThanOrEqualWithCollator, greaterThanWithCollator, greaterThanOrEqualWithCollator Logical operators: @docs not, all, any Control flow: @docs ifElse, conditionally, matchesStr, matchesFloat, coalesce ### Ramps, scales, curves @docs interpolate, Interpolation, step ### String @docs append, downcase, upcase, isSupportedScript, resolvedLocale ### Color @docs makeRGBColor, makeRGBAColor, rgbaChannels ### Math @docs minus, multiply, divideBy, modBy, plus, raiseBy, sqrt, abs, ceil, floor, round, cos, sin, tan, acos, asin, atan, e, pi, ln, ln2, log10, log2 ### Zoom @docs zoom ### Heatmap @docs heatmapDensity, lineProgress ### Enums These are required for various layer properties. @docs Anchor, anchorMap, anchorViewport, AnchorAuto, anchorAutoMap, anchorAutoViewport, anchorAutoAuto, Position, positionCenter, positionLeft, positionRight, positionTop, positionBottom, positionTopLeft, positionTopRight, positionBottomLeft, positionBottomRight, TextFit, textFitNone, textFitWidth, textFitHeight, textFitBoth, LineCap, lineCapButt, lineCapRound, lineCapSquare, LineJoin, lineJoinBevel, lineJoinRound, lineJoinMiter, SymbolPlacement, symbolPlacementPoint, symbolPlacementLine, symbolPlacementLineCenter, TextJustify, textJustifyLeft, textJustifyCenter, textJustifyRight, TextTransform, textTransformNone, textTransformUppercase, textTransformLowercase, RasterResampling, rasterResamplingLinear, rasterResamplingNearest -} import Array exposing (Array) import Json.Encode exposing (Value) {-| Expressions are zero overhead wrappers over the underlying JSON language that attempt to provide some type safety. Note however, that while being a strictly typed language, it has slighlty different semantics tham Elm: - There is only a single number type. I have denoted it `Float`. You will notice that the `int` function takes an Elm int value and converts it to an `Expression expr Float`. - All values may be `null`. There is no `Maybe` type. You can use the `coalesce` function to handle this. - There is no distinction between `List`, `Array`, and tuples. Hence all collections are labeled as `Array`. - Dictionaries are called `Object`. The keys are always `String`, but the values can be of mixed types. Hence retrieving values from them makes code untyped. - You can force the types of things using the `assert...` functions. This will generate a runtime error if the type doesn't match. This should be necessary only rarely. The `exprType` can be: - `CameraExpression` - `DataExpression` - or a type variable representing either of the above The intent is to help you not break your style by using a DataExpression (for example) where it isn't supported. However, this isn't entirely foolproof, so some caution is advised. -} type Expression exprType resultType = Expression Value {-| A camera expression is any expression that uses the zoom operator. Such expressions allow the the appearance of a layer to change with the map's zoom level. Camera expressions can be used to create the appearance of depth and to control data density. zoom |> interpolate Linear [ ( 5, int 1 ) , ( 10, int 5 ) ] |> Layer.circleRadius This example uses the `interpolate` operator to define a linear relationship between zoom level and circle size using a set of input-output pairs. In this case, the expression indicates that the circle radius should be 1 pixel when the zoom level is 5 or below, and 5 pixels when the zoom is 10 or above. In between, the radius will be linearly interpolated between 1 and 5 pixels Camera expressions are allowed anywhere an expression may be used. However, when a camera expression used as the value of a layout or paint property, the `zoom` operator must appear only as the input to an outer `interpolate` or `step` expression There is an important difference between layout and paint properties in the timing of camera expression evaluation. Paint property camera expressions are re-evaluated whenever the zoom level changes, even fractionally. For example, a paint property camera expression will be re-evaluated continuously as the map moves between zoom levels 4.1 and 4.6. On the other hand, a layout property camera expression is evaluated only at integer zoom levels. It will not be re-evaluated as the zoom changes from 4.1 to 4.6 -- only if it goes above 5 or below 4. -} type CameraExpression = CameraExpression {-| A data expression is any expression that access feature data -- that is, any expression that uses one of the data operators: `getProperty`, `hasProperty` , `id`, `geometryType`, or `properties`. Data expressions allow a feature's properties to determine its appearance. They can be used to differentiate features within the same layer and to create data visualizations. makeRGBColor -- red is higher when feature.properties.temperature is higher (getProperty "temperature") -- green is always zero (int 0) -- blue is higher when feature.properties.temperature is lower (getProperty "temperature" |> minus 100) |> Layer.circleColor This example uses the `getProperty` operator to obtain the temperature value of each feature. That value is used to compute arguments to the `makeRGBColor` operator, defining a color in terms of its red, green, and blue components. -} type DataExpression = DataExpression {-| Turns an expression into JSON -} encode : Expression exprType a -> Value encode (Expression value) = value {-| Represents a mixed-type dictionary where keys are always strings -} type Object = Object {-| Represents a color value -} type Color = Color {-| Used for locale sensitive string comparisons. -} type Collator = Collator -- Enums {-| -} type Anchor = Map | Viewport {-| -} anchorMap : Expression exprType Anchor anchorMap = Expression (Json.Encode.string "map") {-| -} anchorViewport : Expression exprType Anchor anchorViewport = Expression (Json.Encode.string "viewport") {-| -} type AnchorAuto = AnchorAuto {-| -} anchorAutoMap : Expression exprType AnchorAuto anchorAutoMap = Expression (Json.Encode.string "map") {-| -} anchorAutoViewport : Expression exprType AnchorAuto anchorAutoViewport = Expression (Json.Encode.string "viewport") {-| -} anchorAutoAuto : Expression exprType AnchorAuto anchorAutoAuto = Expression (Json.Encode.string "auto") {-| -} type Position = Position {-| -} positionCenter : Expression exprType Position positionCenter = Expression (Json.Encode.string "center") {-| -} positionLeft : Expression exprType Position positionLeft = Expression (Json.Encode.string "left") {-| -} positionRight : Expression exprType Position positionRight = Expression (Json.Encode.string "right") {-| -} positionTop : Expression exprType Position positionTop = Expression (Json.Encode.string "top") {-| -} positionBottom : Expression exprType Position positionBottom = Expression (Json.Encode.string "bottom") {-| -} positionTopLeft : Expression exprType Position positionTopLeft = Expression (Json.Encode.string "top-left") {-| -} positionTopRight : Expression exprType Position positionTopRight = Expression (Json.Encode.string "top-right") {-| -} positionBottomLeft : Expression exprType Position positionBottomLeft = Expression (Json.Encode.string "bottom-left") {-| -} positionBottomRight : Expression exprType Position positionBottomRight = Expression (Json.Encode.string "bottom-right") {-| -} type TextFit = TextFit {-| -} textFitNone : Expression exprType TextFit textFitNone = Expression (Json.Encode.string "none") {-| -} textFitWidth : Expression exprType TextFit textFitWidth = Expression (Json.Encode.string "width") {-| -} textFitHeight : Expression exprType TextFit textFitHeight = Expression (Json.Encode.string "height") {-| -} textFitBoth : Expression exprType TextFit textFitBoth = Expression (Json.Encode.string "both") {-| -} type LineCap = LineCap {-| -} lineCapButt : Expression exprType LineCap lineCapButt = Expression (Json.Encode.string "butt") {-| -} lineCapRound : Expression exprType LineCap lineCapRound = Expression (Json.Encode.string "round") {-| -} lineCapSquare : Expression exprType LineCap lineCapSquare = Expression (Json.Encode.string "square") {-| -} type LineJoin = LineJoin {-| -} lineJoinBevel : Expression exprType LineJoin lineJoinBevel = Expression (Json.Encode.string "bevel") {-| -} lineJoinRound : Expression exprType LineJoin lineJoinRound = Expression (Json.Encode.string "round") {-| -} lineJoinMiter : Expression exprType LineJoin lineJoinMiter = Expression (Json.Encode.string "miter") {-| Label placement relative to its geometry. -} type SymbolPlacement = SymbolPlacement {-| The label is placed at the point where the geometry is located. -} symbolPlacementPoint : Expression exprType SymbolPlacement symbolPlacementPoint = Expression (Json.Encode.string "point") {-| The label is placed at the center of the line of the geometry. Can only be used on LineString and Polygon geometries. Note that a single feature in a vector tile may contain multiple line geometries. -} symbolPlacementLineCenter : Expression exprType SymbolPlacement symbolPlacementLineCenter = Expression (Json.Encode.string "line-center") {-| The label is placed along the line of the geometry. Can only be used on LineString and Polygon geometries. -} symbolPlacementLine : Expression exprType SymbolPlacement symbolPlacementLine = Expression (Json.Encode.string "line") {-| -} type TextJustify = TextJustify {-| -} textJustifyLeft : Expression exprType TextJustify textJustifyLeft = Expression (Json.Encode.string "left") {-| -} textJustifyCenter : Expression exprType TextJustify textJustifyCenter = Expression (Json.Encode.string "center") {-| -} textJustifyRight : Expression exprType TextJustify textJustifyRight = Expression (Json.Encode.string "right") {-| -} type TextTransform = TextTransform {-| -} textTransformNone : Expression exprType TextTransform textTransformNone = Expression (Json.Encode.string "none") {-| -} textTransformUppercase : Expression exprType TextTransform textTransformUppercase = Expression (Json.Encode.string "uppercase") {-| -} textTransformLowercase : Expression exprType TextTransform textTransformLowercase = Expression (Json.Encode.string "lowercase") {-| -} type RasterResampling = RasterResampling {-| (Bi)linear filtering interpolates pixel values using the weighted average of the four closest original source pixels creating a smooth but blurry look when overscaled. -} rasterResamplingLinear : Expression exprType RasterResampling rasterResamplingLinear = Expression (Json.Encode.string "linear") {-| Nearest neighbor filtering interpolates pixel values using the nearest original source pixel creating a sharp but pixelated look when overscaled. -} rasterResamplingNearest : Expression exprType RasterResampling rasterResamplingNearest = Expression (Json.Encode.string "nearest") -- literals {-| -} rgba : Float -> Float -> Float -> Float -> Expression exprType Color rgba r g b a = Expression (Json.Encode.string ("rgba(" ++ String.fromFloat r ++ ", " ++ String.fromFloat g ++ ", " ++ String.fromFloat b ++ ", " ++ String.fromFloat a ++ ")")) {-| -} str : String -> Expression exprType String str s = Expression (Json.Encode.string s) {-| -} bool : Bool -> Expression exprType Bool bool b = Expression (Json.Encode.bool b) {-| -} true : Expression exprType Bool true = bool True {-| -} false : Expression exprType Bool false = bool False {-| -} int : Int -> Expression exprType Float int number = Expression (Json.Encode.int number) {-| -} float : Float -> Expression exprType Float float number = Expression (Json.Encode.float number) {-| -} floats : List Float -> Expression exprType (Array Float) floats = List.map float >> list {-| -} strings : List String -> Expression exprType (Array String) strings = List.map str >> list list : List (Expression exprType a) -> Expression exprType (Array a) list = Json.Encode.list encode >> Expression >> call1 "literal" {-| Returns a `Collator` for use in locale-dependent comparison operations. The first argument specifies if the comparison should be case sensitive. The second specifies if it is diacritic sensitive. The final locale argument specifies the IETF language tag of the locale to use. -} collator : Expression e1 Bool -> Expression e2 Bool -> Expression e3 String -> Expression e4 Collator collator (Expression caseSensitive) (Expression diacriticSensitive) (Expression locale) = Expression (Json.Encode.list identity (Json.Encode.string "collator" :: [ Json.Encode.object [ ( "case-sensitive", caseSensitive ) , ( "diacritic-sensitive", diacriticSensitive ) , ( "locale", locale ) ] ] ) ) {-| Returns a `Collator` with the default locale (which depends on the system running the code), which is not sensitive to case nor diacritic. -} defaultCollator : Expression exprType Collator defaultCollator = call0 "collator" {-| Takes a list of key value pairs. The values are JSON Values, therefore allowing for mixed types. -} object : List ( String, Value ) -> Expression exprType Object object = Json.Encode.object >> Expression >> call1 "literal" -- Type Functions {-| -} assertArray : Expression exprType any -> Expression exprType (Array any) assertArray = call1 "array" {-| -} assertArrayOfStrings : Expression exprType any -> Expression exprType (Array String) assertArrayOfStrings = call2 "array" (str "string") {-| -} assertArrayOfFloats : Expression exprType any -> Expression exprType (Array Float) assertArrayOfFloats = call2 "array" (str "number") {-| -} assertArrayOfBools : Expression exprType any -> Expression exprType (Array Bool) assertArrayOfBools = call2 "array" (str "boolean") {-| -} assertBool : Expression exprType any -> Expression exprType Bool assertBool = call1 "boolean" {-| -} assertBoolWithFalback : Bool -> Expression exprType any -> Expression exprType Bool assertBoolWithFalback fallback value = call2 "boolean" value (bool fallback) -- assertAtLeastOneBool : List (Expression exprType any) -> Expression exprType Bool -- assertAtLeastOneBool = -- call "boolean" {-| -} assertFloat : Expression exprType any -> Expression exprType Float assertFloat = call1 "number" {-| -} assertObject : Expression exprType any -> Expression exprType Object assertObject = call1 "object" {-| -} assertString : Expression exprType any -> Expression exprType String assertString = call1 "string" {-| Converts the input value to a boolean. The result is false when then input is an empty string, 0, false, null, or NaN; otherwise it is true. -} toBool : Expression exprType any -> Expression exprType Bool toBool = call1 "to-boolean" {-| Converts the input value to a color. If it can't be converted, the falback value will be used. input |> toColor (rgba 0 0 0 1) -- fallback color -} toColor : Expression exprType2 Color -> Expression exprType any -> Expression exprType Color toColor fallback input = call2 "to-color" input fallback {-| Converts the input value to a number, if possible. If the input is null or false, the result is 0. If the input is true, the result is 1. If the input is a string, it is converted to a number as specified by the ["ToNumber Applied to the String Type" algorithm of the ECMAScript Language Specification](https://tc39.github.io/ecma262/#sec-tonumber-applied-to-the-string-type). If this fails, the fallback value is used. input |> toFloat 0 -- fallback -} toFloat : Float -> Expression exprType any -> Expression exprType Float toFloat fallback input = call2 "to-number" input (float fallback) {-| Converts the input value to a string. If the input is `null`, the result is `""`. If the input is a boolean, the result is `"true"` or `"false"`. If the input is a number, it is converted to a string as specified by the ["NumberToString" algorithm](https://tc39.github.io/ecma262/#sec-tostring-applied-to-the-number-type) of the ECMAScript Language Specification. If the input is a color, it is converted to a string of the form `"rgba(r,g,b,a)"`, where r, g, and b are numerals ranging from 0 to 255, and a ranges from 0 to 1. Otherwise, the input is converted to a string in the format specified by the [`JSON.stringify`](https://tc39.github.io/ecma262/#sec-json.stringify) function of the ECMAScript Language Specification. -} toString : Expression exprType any -> Expression exprType String toString = call1 "to-string" {-| Returns a string describing the type of the given value. -} typeof : Expression exprType any -> Expression exprType String typeof = call1 "typeof" -- Expressions call0 n = call n [] call1 n (Expression a) = call n [ a ] call2 n (Expression a) (Expression b) = call n [ a, b ] call3 n (Expression a) (Expression b) (Expression c) = call n [ a, b, c ] call4 n (Expression a) (Expression b) (Expression c) (Expression d) = call n [ a, b, c, d ] calln n expressions = call n (List.map encode expressions) call name args = Expression (Json.Encode.list identity (Json.Encode.string name :: args)) {-| Retrieves a property value from the current feature's state. Returns null if the requested property is not present on the feature's state. A feature's state is not part of the GeoJSON or vector tile data, and must be set programmatically on each feature. Note that `featureState` can only be used with paint properties that support data-driven styling. -} featureState : Expression exprType String -> Expression DataExpression any featureState = call1 "feature-state" {-| Gets the feature's geometry type: Point, MultiPoint, LineString, MultiLineString, Polygon, MultiPolygon. -} geometryType : Expression DataExpression String geometryType = call0 "geometry-type" {-| Gets the feature's id, if it has one. -} id : Expression DataExpression any id = call0 "id" {-| Gets the feature properties object. Note that in some cases, it may be more efficient to use `getProperty (str "property-name")` directly. -} properties : Expression DataExpression Object properties = call0 "properties" {-| Retrieves an item from an array. -} at : Expression exprType1 Float -> Expression exprType2 (Array a) -> Expression exprType2 a at = call2 "at" {-| Retrieves a property value from the current feature's properties. Returns null if the requested property is missing. -} getProperty : Expression exprType String -> Expression DataExpression any getProperty = call1 "get" {-| Retrieves a property value from an object. Returns null if the requested property is missing. -} get : Expression exprType1 String -> Expression exprType2 Object -> Expression exprType2 any get = call2 "get" {-| Tests for the presence of an property value in the current feature's properties. -} hasProperty : Expression exprType String -> Expression DataExpression Bool hasProperty = call1 "has" {-| Tests for the presence of an property value in an object. -} has : Expression exprType1 String -> Expression exprType2 Object -> Expression exprType2 Bool has = call2 "has" {-| Gets the length of an array. -} count : Expression exprType (Array any) -> Expression exprType Float count = call1 "length" {-| Gets the length of a string. -} length : Expression exprType String -> Expression exprType Float length = call1 "length" {-| Logical negation. Returns true if the input is false, and false if the input is true. -} not : Expression exprType Bool -> Expression exprType Bool not = call1 "!" {-| Returns true if the input values are not equal, false otherwise. -} notEqual : Expression exprType1 a -> Expression exprType2 a -> Expression exprType1 Bool notEqual = call2 "!=" {-| -} notEqualWithCollator : Expression exprType1 String -> Expression exprType2 String -> Expression exprType3 Collator -> Expression exprType1 Bool notEqualWithCollator = call3 "!=" {-| Returns true if the first input is strictly less than the second, false otherwise. -} lessThan : Expression exprType1 comparable -> Expression exprType2 comparable -> Expression exprType1 Bool lessThan = call2 "<" {-| -} lessThanWithCollator : Expression exprType1 String -> Expression exprType2 String -> Expression exprType3 Collator -> Expression exprType1 Bool lessThanWithCollator = call3 "<" {-| Returns true if the first input is less than or equal to the second, false otherwise. -} lessThanOrEqual : Expression exprType1 comparable -> Expression exprType2 comparable -> Expression exprType1 Bool lessThanOrEqual = call2 "<=" {-| -} lessThanOrEqualWithCollator : Expression exprType1 String -> Expression exprType2 String -> Expression exprType3 Collator -> Expression exprType1 Bool lessThanOrEqualWithCollator = call3 "<=" {-| Returns true if the input values are equal, false otherwise. -} isEqual : Expression exprType1 a -> Expression exprType2 a -> Expression exprType1 Bool isEqual = call2 "==" {-| -} isEqualWithCollator : Expression exprType1 String -> Expression exprType2 String -> Expression exprType3 Collator -> Expression exprType1 Bool isEqualWithCollator = call3 "==" {-| Returns true if the first input is strictly greater than the second, false otherwise. -} greaterThan : Expression exprType1 comparable -> Expression exprType2 comparable -> Expression exprType1 Bool greaterThan = call2 ">" {-| -} greaterThanWithCollator : Expression exprType1 String -> Expression exprType2 String -> Expression exprType3 Collator -> Expression exprType1 Bool greaterThanWithCollator = call3 ">" {-| Returns true if the first input is greater than or equal to the second, false otherwise. -} greaterThanOrEqual : Expression exprType1 comparable -> Expression exprType2 comparable -> Expression exprType1 Bool greaterThanOrEqual = call2 ">=" {-| -} greaterThanOrEqualWithCollator : Expression exprType1 String -> Expression exprType2 String -> Expression exprType3 Collator -> Expression exprType1 Bool greaterThanOrEqualWithCollator = call3 ">=" {-| Returns true if all the inputs are true, false otherwise. The inputs are evaluated in order, and evaluation is short-circuiting: once an input expression evaluates to false, the result is false and no further input expressions are evaluated. -} all : List (Expression exprType Bool) -> Expression exprType Bool all = calln "all" {-| Returns true if any of the inputs are true, false otherwise. The inputs are evaluated in order, and evaluation is short-circuiting: once an input expression evaluates to true, the result is true and no further input expressions are evaluated. -} any : List (Expression exprType Bool) -> Expression exprType Bool any = calln "any" {-| Evaluates each expression in turn until the first non-null value is obtained, and returns that value. -} coalesce : List (Expression exprType outputType) -> Expression exprType outputType coalesce = calln "coalesce" {-| The ternary operator: Layer.iconImage <| ifElse (greaterThan (getProperty (str "size")) (float 30)) (str "hospital-32") (str "clinic-32") -} ifElse : Expression exprType1 Bool -> Expression exprType2 output -> Expression exprType3 output -> Expression exprType1 output ifElse = call3 "case" {-| Selects the first output whose condition evaluates to `true` -} conditionally : List ( Expression exprType1 Bool, Expression exprType2 output ) -> Expression exprType2 output -> Expression exprType1 output conditionally vals (Expression default) = call "case" (List.concatMap (\( Expression cond, Expression res ) -> [ cond, res ]) vals ++ [ default ]) {-| Selects the output whose label value matches the input value, or the fallback value if no match is found. getProperty (str "type") |> matchesStr [ ("hospital", str "icon-hospital") , ("clinic", str "icon-medical") ] (str "icon-generic") -- fallback value |> Layer.iconImage -} matchesStr : List ( String, Expression exprType2 output ) -> Expression exprType1 output -> Expression exprType3 String -> Expression exprType3 output matchesStr options (Expression default) (Expression input) = let properOptions = List.concatMap (\( label, Expression output ) -> [ Json.Encode.string label, output ]) options in call "match" (input :: properOptions ++ [ default ]) {-| Selects the output whose label value matches the input value, or the fallback value if no match is found. getProperty (str "size") |> matchesStr [ (1, str "icon-hospital") , (2, str "icon-medical") ] (str "icon-generic") -- fallback value |> Layer.iconImage -} matchesFloat : List ( Float, Expression exprType2 output ) -> Expression exprType1 output -> Expression exprType3 Float -> Expression exprType3 output matchesFloat options (Expression default) (Expression input) = let properOptions = List.concatMap (\( label, Expression output ) -> [ Json.Encode.float label, output ]) options in call "match" (input :: properOptions ++ [ default ]) {-| Interpolation types: - `Linear`: interpolates linearly between the pair of stops just less than and just greater than the input. - `Exponential base`: interpolates exponentially between the stops just less than and just greater than the input. `base` controls the rate at which the output increases: higher values make the output increase more towards the high end of the range. With values close to 1 the output increases linearly. - `CubicBezier (x1, y1) (x2, y2)`: interpolates using the cubic bezier curve defined by the given control points. -} type Interpolation = Linear | Exponential Float | CubicBezier ( Float, Float ) ( Float, Float ) encodeInterpolation interpolation = case interpolation of Linear -> call0 "linear" Exponential base -> call "exponential" [ Json.Encode.float base ] CubicBezier ( x1, y1 ) ( x2, y2 ) -> call "cubic-bezier" [ Json.Encode.float x1, Json.Encode.float y1, Json.Encode.float x2, Json.Encode.float y2 ] {-| Produces continuous, smooth results by interpolating between pairs of input and output values ("stops"). The output type must be `Float`, `Array Float`, or `Color`. zoom |> interpolate Linear [ ( 5, int 1 ) , ( 10, int 5 ) ] |> Layer.circleRadius -} interpolate : Interpolation -> List ( Float, Expression exprType2 outputType ) -> Expression exprType1 Float -> Expression exprType1 outputType interpolate interpolation stops (Expression input) = call "interpolate" <| (encodeInterpolation interpolation |> encode) :: input :: List.concatMap (\( stop, Expression res ) -> [ Json.Encode.float stop, res ]) stops {-| Produces discrete, stepped results by evaluating a piecewise-constant function defined by pairs of input and output values ("stops"). Stop inputs must be Floats in strictly ascending order. Returns the output value of the stop just less than the input, or the first input if the input is less than the first stop. zoom |> step (int 1) [ ( 5, int 3 ) , ( 10, int 5 ) ] |> Layer.circleRadius -} step : Expression exprType2 Float -> List ( Float, Expression exprType1 output ) -> Expression exprType1 output -> Expression exprType2 output step (Expression default) stops (Expression input) = call "step" <| input :: default :: List.concatMap (\( stop, Expression res ) -> [ Json.Encode.float stop, res ]) stops {-| Returns a string consisting of the concatenation of the inputs. Argument order designed for pipelines: a |> append b --> a ++ b -} append : Expression exprType String -> Expression exprType String -> Expression exprType String append a b = call2 "concat" b a {-| Returns the input string converted to lowercase. Follows the Unicode Default Case Conversion algorithm and the locale-insensitive case mappings in the Unicode Character Database. -} downcase : Expression exprType String -> Expression exprType String downcase = call1 "downcase" {-| Returns true if the input string is expected to render legibly. Returns false if the input string contains sections that cannot be rendered without potential loss of meaning (e.g. Indic scripts that require complex text shaping, or right-to-left scripts if the the mapbox-gl-rtl-text plugin is not in use in Mapbox GL JS). -} isSupportedScript : Expression exprType String -> Expression exprType Bool isSupportedScript = call1 "is-supported-script" {-| Returns the IETF language tag of the locale being used by the provided collator. This can be used to determine the default system locale, or to determine if a requested locale was successfully loaded. -} resolvedLocale : Expression exprType Collator -> Expression exprType String resolvedLocale = call1 "resolved-locale" {-| Returns the input string converted to uppercase. Follows the Unicode Default Case Conversion algorithm and the locale-insensitive case mappings in the Unicode Character Database. -} upcase : Expression exprType String -> Expression exprType String upcase = call1 "upcase" {-| Creates a color value from red, green, and blue components, which must range between 0 and 255, and an alpha component of 1. If any component is out of range, the expression is an error. -} makeRGBColor : Expression exprType Float -> Expression exprType Float -> Expression exprType Float -> Expression exprType Color makeRGBColor = call3 "rgb" {-| Creates a color value from red, green, blue components, which must range between 0 and 255, and an alpha component which must range between 0 and 1. If any component is out of range, the expression is an error. -} makeRGBAColor : Expression exprType Float -> Expression exprType Float -> Expression exprType Float -> Expression exprType Float -> Expression exprType Color makeRGBAColor = call4 "rgba" {-| Returns a four-element array containing the input color's red, green, blue, and alpha components, in that order. -} rgbaChannels : Expression exprType Color -> Expression exprType (Array Float) rgbaChannels = call1 "to-rgba" -- Math {-| Returns the result of subtracting the first input from the second. a |> minus b --> a - b -} minus : Expression exprType Float -> Expression exprType Float -> Expression exprType Float minus a b = call2 "-" b a {-| Returns the product of the inputs. -} multiply : Expression exprType Float -> Expression exprType Float -> Expression exprType Float multiply = call2 "*" {-| Returns the result of floating point division of the second input by the first. a |> divideBy b --> a / b -} divideBy : Expression exprType Float -> Expression exprType Float -> Expression exprType Float divideBy a b = call2 "/" b a {-| Returns the remainder after integer division of the second input by the first. a |> modBy b --> a % b -} modBy : Expression exprType Float -> Expression exprType Float -> Expression exprType Float modBy a b = call2 "%" b a {-| Returns the result of raising the second input to the power specified by the first. a |> raiseBy b --> a ^ b -} raiseBy : Expression exprType Float -> Expression exprType Float -> Expression exprType Float raiseBy a b = call2 "^" b a {-| Returns the sum of the inputs. -} plus : Expression exprType Float -> Expression exprType Float -> Expression exprType Float plus = call2 "+" {-| Returns the absolute value of the input. -} abs : Expression exprType Float -> Expression exprType Float abs = call1 "abs" {-| Returns the arccosine of the input. -} acos : Expression exprType Float -> Expression exprType Float acos = call1 "acos" {-| Returns the arcsine of the input. -} asin : Expression exprType Float -> Expression exprType Float asin = call1 "asin" {-| Returns the arctangent of the input. -} atan : Expression exprType Float -> Expression exprType Float atan = call1 "atan" {-| Returns the smallest integer that is greater than or equal to the input. -} ceil : Expression exprType Float -> Expression exprType Float ceil = call1 "ceil" {-| Returns the cosine of the input. -} cos : Expression exprType Float -> Expression exprType Float cos = call1 "cos" {-| Returns the mathematical constant e. -} e : Expression exprType Float e = call0 "e" {-| Returns the largest integer that is less than or equal to the input. -} floor : Expression exprType Float -> Expression exprType Float floor = call1 "floor" {-| Returns the natural logarithm of the input. -} ln : Expression exprType Float -> Expression exprType Float ln = call1 "ln" {-| Returns mathematical constant ln(2). -} ln2 : Expression exprType Float ln2 = call0 "ln2" {-| Returns the base-ten logarithm of the input. -} log10 : Expression exprType Float -> Expression exprType Float log10 = call1 "log10" {-| Returns the base-two logarithm of the input. -} log2 : Expression exprType Float -> Expression exprType Float log2 = call1 "log2" {-| Returns the maximum value of the inputs. -} max : Expression exprType Float -> Expression exprType Float -> Expression exprType Float max = call2 "max" {-| Returns the minimum value of the inputs. -} min : Expression exprType Float -> Expression exprType Float -> Expression exprType Float min = call2 "min" {-| -} pi : Expression exprType Float pi = call0 "pi" {-| Rounds the input to the nearest integer. Halfway values are rounded away from zero. For example, `round (float -1.5)` evaluates to -2. -} round : Expression exprType Float -> Expression exprType Float round = call1 "round" {-| Returns the sine of the input. -} sin : Expression exprType Float -> Expression exprType Float sin = call1 "sin" {-| Returns the square root of the input. -} sqrt : Expression exprType Float -> Expression exprType Float sqrt = call1 "sqrt" {-| Returns the tangent of the input. -} tan : Expression exprType Float -> Expression exprType Float tan = call1 "tan" -- Zoom {-| Gets the current zoom level. Note that in style layout and paint properties, `zoom` may only appear as the input to a top-level `step` or `interpolate` expression. -} zoom : Expression CameraExpression Float zoom = call0 "zoom" {-| Gets the kernel density estimation of a pixel in a heatmap layer, which is a relative measure of how many data points are crowded around a particular pixel. Can only be used in the `heatmapColor` property. -} heatmapDensity : Expression exprType Float heatmapDensity = call0 "heatmap-density" {-| Gets the progress along a gradient line. Can only be used in the `lineGradient` property. -} lineProgress : Expression exprType Float lineProgress = call0 "line-progress"